Header

UZH-Logo

Maintenance Infos

Arctic greening associated with lengthening growing seasons in Northern Alaska


Arndt, Kyle A; Santos, Maria J; Ustin, Susan; Davidson, Scott J; Stow, Doug; Oechel, Walter C; Tran, Thao T P; Graybill, Brian; Zona, Donatella (2019). Arctic greening associated with lengthening growing seasons in Northern Alaska. Environmental Research Letters, 14(12):125018.

Abstract

Many studies have reported that the Arctic is greening; however, we lack an understanding of the detailed patterns and processes that are leading to this observed greening. The normalized difference vegetation index (NDVI) is used to quantify greening, which has had largely positive trends over the last few decades using low spatial resolution satellite imagery such as AVHRR or MODIS over the pan-Arctic region. However, substantial fine scale spatial heterogeneity in the Arctic makes this large-scale investigation hard to interpret in terms of vegetation and other environmental changes. Here we focus on one area of the northern Alaskan Arctic using high spatial resolution (4 m) multispectral satellite imagery from DigitalGlobe™ to analyze the greening trend near Utqiaġvik (formerly known as Barrow) over 14 years from 2002 to 2016. We found that tundra vegetation has been greening (τ = 0.65, p = 0.01, NDVI increase of 0.01 yr−1) despite no overall change in vegetation community composition. The greening is most closely correlated to the number of thawing degree days (R 2 = 0.77, F = 21.5, p < 0.001) which increased in a similar linear trend over the 14 year study period (1.79 ± 0.50 days per year, p < 0.01, τ = −0.56). This suggests that in this Arctic ecosystem, greening is occurring due to a lengthening growing season that appears to stimulate plant productivity without any significant change in vegetation communities. We found that vegetation communities in wetter locations greened about twice as fast as those found in drier conditions supporting the hypothesis that these communities respond more strongly to warming. We suggest that in Arctic environments, vegetation productivity may continue to rise, particularly in wet areas.

Abstract

Many studies have reported that the Arctic is greening; however, we lack an understanding of the detailed patterns and processes that are leading to this observed greening. The normalized difference vegetation index (NDVI) is used to quantify greening, which has had largely positive trends over the last few decades using low spatial resolution satellite imagery such as AVHRR or MODIS over the pan-Arctic region. However, substantial fine scale spatial heterogeneity in the Arctic makes this large-scale investigation hard to interpret in terms of vegetation and other environmental changes. Here we focus on one area of the northern Alaskan Arctic using high spatial resolution (4 m) multispectral satellite imagery from DigitalGlobe™ to analyze the greening trend near Utqiaġvik (formerly known as Barrow) over 14 years from 2002 to 2016. We found that tundra vegetation has been greening (τ = 0.65, p = 0.01, NDVI increase of 0.01 yr−1) despite no overall change in vegetation community composition. The greening is most closely correlated to the number of thawing degree days (R 2 = 0.77, F = 21.5, p < 0.001) which increased in a similar linear trend over the 14 year study period (1.79 ± 0.50 days per year, p < 0.01, τ = −0.56). This suggests that in this Arctic ecosystem, greening is occurring due to a lengthening growing season that appears to stimulate plant productivity without any significant change in vegetation communities. We found that vegetation communities in wetter locations greened about twice as fast as those found in drier conditions supporting the hypothesis that these communities respond more strongly to warming. We suggest that in Arctic environments, vegetation productivity may continue to rise, particularly in wet areas.

Statistics

Citations

Dimensions.ai Metrics

Altmetrics

Downloads

9 downloads since deposited on 08 Jan 2020
9 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Uncontrolled Keywords:Renewable Energy, Sustainability and the Environment, Public Health, Environmental and Occupational Health, General Environmental Science
Language:English
Date:23 December 2019
Deposited On:08 Jan 2020 15:01
Last Modified:08 Jan 2020 15:13
Publisher:IOP Publishing
ISSN:1748-9326
OA Status:Gold
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1088/1748-9326/ab5e26

Download

Gold Open Access

Download PDF  'Arctic greening associated with lengthening growing seasons in Northern Alaska'.
Preview
Content: Accepted Version
Language: English
Filetype: PDF
Size: 1MB
View at publisher
Licence: Creative Commons: Attribution 3.0 Unported (CC BY 3.0)