Header

UZH-Logo

Maintenance Infos

Molecular Mechanisms of Colistin-Induced Nephrotoxicity


Gai, Zhibo; Samodelov, Sophia L.; Kullak-Ublick, Gerd A.; Visentin, Michele (2019). Molecular Mechanisms of Colistin-Induced Nephrotoxicity. Molecules, 24(3):653.

Abstract

The emergence of multidrug resistant (MDR) infections and the shortage of new therapeutic options have made colistin, a polymyxin antibiotic, the main option for the treatment of MDR Gram-negative bacterial infections in the last decade. However, the rapid onset of renal damage often prevents the achievement of optimal therapeutic doses and/or forces the physicians to interrupt the therapy, increasing the risk of drug resistance. The proper management of colistin-induced nephrotoxicity remains challenging, mostly because the investigation of the cellular and molecular pharmacology of this drug, off the market for decades, has been largely neglected. For years, the renal damage induced by colistin was considered a mere consequence of the detergent activity of this drug on the cell membrane of proximal tubule cells. Lately, it has been proposed that the intracellular accumulation is a precondition for colistin-mediated renal damage, and that mitochondria might be a primary site of damage. Antioxidant approaches (e.g., ascorbic acid) have shown promising results in protecting the kidney of rodents exposed to colistin, yet none of these strategies have yet reached the bedside. Here we provide a critical overview of the possible mechanisms that may contribute to colistin-induced renal damage and the potential protective strategies under investigation.

Abstract

The emergence of multidrug resistant (MDR) infections and the shortage of new therapeutic options have made colistin, a polymyxin antibiotic, the main option for the treatment of MDR Gram-negative bacterial infections in the last decade. However, the rapid onset of renal damage often prevents the achievement of optimal therapeutic doses and/or forces the physicians to interrupt the therapy, increasing the risk of drug resistance. The proper management of colistin-induced nephrotoxicity remains challenging, mostly because the investigation of the cellular and molecular pharmacology of this drug, off the market for decades, has been largely neglected. For years, the renal damage induced by colistin was considered a mere consequence of the detergent activity of this drug on the cell membrane of proximal tubule cells. Lately, it has been proposed that the intracellular accumulation is a precondition for colistin-mediated renal damage, and that mitochondria might be a primary site of damage. Antioxidant approaches (e.g., ascorbic acid) have shown promising results in protecting the kidney of rodents exposed to colistin, yet none of these strategies have yet reached the bedside. Here we provide a critical overview of the possible mechanisms that may contribute to colistin-induced renal damage and the potential protective strategies under investigation.

Statistics

Citations

Dimensions.ai Metrics
6 citations in Web of Science®
8 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

19 downloads since deposited on 16 Jan 2020
19 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, further contribution
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Clinical Pharmacology and Toxicology
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Physical Sciences > Analytical Chemistry
Physical Sciences > Chemistry (miscellaneous)
Life Sciences > Molecular Medicine
Life Sciences > Pharmaceutical Science
Life Sciences > Drug Discovery
Physical Sciences > Physical and Theoretical Chemistry
Physical Sciences > Organic Chemistry
Uncontrolled Keywords:Organic Chemistry
Language:English
Date:12 February 2019
Deposited On:16 Jan 2020 12:00
Last Modified:22 Apr 2020 22:24
Publisher:MDPI Publishing
ISSN:1420-3049
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.3390/molecules24030653
PubMed ID:30759858
Project Information:
  • : FunderSNSF
  • : Grant ID310030_175639
  • : Project TitleRole of drug transporters and nuclear receptors in drug-induced liver and kidney injury

Download

Gold Open Access

Download PDF  'Molecular Mechanisms of Colistin-Induced Nephrotoxicity'.
Preview
Content: Published Version
Language: English
Filetype: PDF
Size: 1MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)