Navigation auf zora.uzh.ch

Search ZORA

ZORA (Zurich Open Repository and Archive)

On geodesic exponential maps of the Virasoro group

Constantin, A; Kappeler, T; Kolev, B; Topalov, P (2007). On geodesic exponential maps of the Virasoro group. Annals of Global Analysis and Geometry, 31(2):155-180.

Abstract

We study the geodesic exponential maps corresponding to Sobolev type right-invariant (weak) Riemannian metrics μ(k) (k≥ 0) on the Virasoro group Vir and show that for k≥ 2, but not for k = 0,1, each of them defines a smooth Fréchet chart of the unital element e ∈Vir. In particular, the geodesic exponential map corresponding to the Korteweg–de Vries (KdV) equation (k = 0) is not a local diffeomorphism near the origin.

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Mathematics
Dewey Decimal Classification:510 Mathematics
Scopus Subject Areas:Physical Sciences > Analysis
Social Sciences & Humanities > Political Science and International Relations
Physical Sciences > Geometry and Topology
Language:English
Date:2007
Deposited On:09 Apr 2009 20:21
Last Modified:06 Jan 2025 04:35
Publisher:Springer
ISSN:0232-704X
Additional Information:The original publication is available at www.springerlink.com
OA Status:Green
Publisher DOI:https://doi.org/10.1007/s10455-006-9042-8
Download PDF  'On geodesic exponential maps of the Virasoro group'.
Preview
  • Content: Accepted Version
Download PDF  'On geodesic exponential maps of the Virasoro group'.
Preview
  • Content: Published Version
  • Language: English
  • Description: Nationallizenz 142-005

Metadata Export

Statistics

Citations

Dimensions.ai Metrics
137 citations in Web of Science®
138 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

104 downloads since deposited on 09 Apr 2009
23 downloads since 12 months
Detailed statistics

Authors, Affiliations, Collaborations

Similar Publications