Header

UZH-Logo

Maintenance Infos

Spatial variation of human influences on grassland biomass on the Qinghai-Tibetan plateau


Li, Chengxiu; de Jong, Rogier; Schmid, Bernhard; Wulf, Hendrik; Schaepman, Michael E (2019). Spatial variation of human influences on grassland biomass on the Qinghai-Tibetan plateau. Science of the Total Environment, 665:678-689.

Abstract

An improved understanding of increased human influence on ecosystems is needed for predicting ecosystem processes and sustainable ecosystem management. We studied spatial variation of human influence on grassland ecosystems at two scales across the Qinghai-Tibetan Plateau (QTP), where increased human activities may have led to ecosystem degradation. At the 10 km scale, we mapped human-influenced spatial patterns based on a hypothesis that spatial patterns of biomass that could not be attributed to environmental variables were likely correlated to human activities. In part this hypothesis could be supported via a positive correlation between biomass unexplained by environmental variables and livestock density. At the 500 m scale, using distance to settlements within a radius of 8 km as a proxy of human-influence intensity, we found both negatively human-influenced areas where biomass decreased closer to settlements (regions with higher livestock density) and positively human-influenced areas where biomass increased closer to settlements (regions with lower livestock density). These results suggest complex relationships between livestock grazing and biomass, varying between spatial scales and regions. Grazing may boost biomass production across the whole QTP at the 10 km scale. However, overgrazing may reduce it near settlements at the 500 m scale. Our approach of mapping and understanding human influence on ecosystems at different scales could guide pasture management to protect grassland in vulnerable regions on the QTP and beyond.

Abstract

An improved understanding of increased human influence on ecosystems is needed for predicting ecosystem processes and sustainable ecosystem management. We studied spatial variation of human influence on grassland ecosystems at two scales across the Qinghai-Tibetan Plateau (QTP), where increased human activities may have led to ecosystem degradation. At the 10 km scale, we mapped human-influenced spatial patterns based on a hypothesis that spatial patterns of biomass that could not be attributed to environmental variables were likely correlated to human activities. In part this hypothesis could be supported via a positive correlation between biomass unexplained by environmental variables and livestock density. At the 500 m scale, using distance to settlements within a radius of 8 km as a proxy of human-influence intensity, we found both negatively human-influenced areas where biomass decreased closer to settlements (regions with higher livestock density) and positively human-influenced areas where biomass increased closer to settlements (regions with lower livestock density). These results suggest complex relationships between livestock grazing and biomass, varying between spatial scales and regions. Grazing may boost biomass production across the whole QTP at the 10 km scale. However, overgrazing may reduce it near settlements at the 500 m scale. Our approach of mapping and understanding human influence on ecosystems at different scales could guide pasture management to protect grassland in vulnerable regions on the QTP and beyond.

Statistics

Citations

Dimensions.ai Metrics
3 citations in Web of Science®
3 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 10 Jan 2020
1 download since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Uncontrolled Keywords:Environmental Engineering, Waste Management and Disposal, Pollution, Environmental Chemistry
Language:English
Date:1 May 2019
Deposited On:10 Jan 2020 15:09
Last Modified:10 Jan 2020 15:09
Publisher:Elsevier
ISSN:0048-9697
OA Status:Closed
Publisher DOI:https://doi.org/10.1016/j.scitotenv.2019.01.321

Download

Closed Access: Download allowed only for UZH members

Content: Accepted Version
Language: English
Filetype: PDF - Registered users only until 1 June 2021
Size: 2MB
View at publisher
Embargo till: 2021-06-01