Header

UZH-Logo

Maintenance Infos

Family-level leaf nitrogen and phosphorus stoichiometry of global terrestrial plants


Tian, Di; Yan, Zhengbing; Ma, Suhui; Ding, Yuehong; Luo, Yongkai; Chen, Yahan; Du, Enzai; Han, Wenxuan; Kovacs, Emoke Dalma; Shen, Haihua; Hu, Huifeng; Kattge, Jens; Schmid, Bernhard; Fang, Jingyun (2019). Family-level leaf nitrogen and phosphorus stoichiometry of global terrestrial plants. Science China. Life sciences, 62(8):1047-1057.

Abstract

Leaf nitrogen (N) and phosphorus (P) concentrations are critical for photosynthesis, growth, reproduction and other ecological processes of plants. Previous studies on large-scale biogeographic patterns of leaf N and P stoichiometric relationships were mostly conducted using data pooled across taxa, while family/genus-level analyses are rarely reported. Here, we examined global patterns of family-specific leaf N and P stoichiometry using a global data set of 12,716 paired leaf N and P records which includes 204 families, 1,305 genera, and 3,420 species. After determining the minimum size of samples (i.e., 35 records), we analyzed leaf N and P concentrations, N:P ratios and N∼P scaling relationships of plants for 62 families with 11,440 records. The numeric values of leaf N and P stoichiometry varied significantly across families and showed diverse trends along gradients of mean annual temperature (MAT) and mean annual precipitation (MAP). The leaf N and P concentrations and N:P ratios of 62 families ranged from 6.11 to 30.30 mg g−1, 0.27 to 2.17 mg g−1, and 10.20 to 35.40, respectively. Approximately 1/3–1/2 of the families (22–35 of 62) showed a decrease in leaf N and P concentrations and N:P ratios with increasing MAT or MAP, while the remainder either did not show a significant trend or presented the opposite pattern. Family-specific leaf N∼P scaling exponents did not converge to a certain empirical value, with a range of 0.307–0.991 for 54 out of 62 families which indicated a significant N∼P scaling relationship. Our results for the first time revealed large variation in the family-level leaf N and P stoichiometry of global terrestrial plants and that the stoichiometric relationships for at least one-third of the families were not consistent with the global trends reported previously. The numeric values of the family-specific leaf N and P stoichiometry documented in the current study provide critical synthetic parameters for biogeographic modeling and for further studies on the physiological and ecological mechanisms underlying the nutrient use strategies of plants from different phylogenetic taxa.

Abstract

Leaf nitrogen (N) and phosphorus (P) concentrations are critical for photosynthesis, growth, reproduction and other ecological processes of plants. Previous studies on large-scale biogeographic patterns of leaf N and P stoichiometric relationships were mostly conducted using data pooled across taxa, while family/genus-level analyses are rarely reported. Here, we examined global patterns of family-specific leaf N and P stoichiometry using a global data set of 12,716 paired leaf N and P records which includes 204 families, 1,305 genera, and 3,420 species. After determining the minimum size of samples (i.e., 35 records), we analyzed leaf N and P concentrations, N:P ratios and N∼P scaling relationships of plants for 62 families with 11,440 records. The numeric values of leaf N and P stoichiometry varied significantly across families and showed diverse trends along gradients of mean annual temperature (MAT) and mean annual precipitation (MAP). The leaf N and P concentrations and N:P ratios of 62 families ranged from 6.11 to 30.30 mg g−1, 0.27 to 2.17 mg g−1, and 10.20 to 35.40, respectively. Approximately 1/3–1/2 of the families (22–35 of 62) showed a decrease in leaf N and P concentrations and N:P ratios with increasing MAT or MAP, while the remainder either did not show a significant trend or presented the opposite pattern. Family-specific leaf N∼P scaling exponents did not converge to a certain empirical value, with a range of 0.307–0.991 for 54 out of 62 families which indicated a significant N∼P scaling relationship. Our results for the first time revealed large variation in the family-level leaf N and P stoichiometry of global terrestrial plants and that the stoichiometric relationships for at least one-third of the families were not consistent with the global trends reported previously. The numeric values of the family-specific leaf N and P stoichiometry documented in the current study provide critical synthetic parameters for biogeographic modeling and for further studies on the physiological and ecological mechanisms underlying the nutrient use strategies of plants from different phylogenetic taxa.

Statistics

Citations

Altmetrics

Downloads

13 downloads since deposited on 10 Jan 2020
13 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Uncontrolled Keywords:General Biochemistry, Genetics and Molecular Biology, General Agricultural and Biological Sciences, General Environmental Science
Language:English
Date:1 August 2019
Deposited On:10 Jan 2020 15:45
Last Modified:10 Jan 2020 15:45
Publisher:Zhongguo Kexue Zazhishe
ISSN:1674-7305
OA Status:Green
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1007/s11427-019-9584-1

Download

Green Open Access

Download PDF  'Family-level leaf nitrogen and phosphorus stoichiometry of global terrestrial plants'.
Preview
Content: Accepted Version
Language: English
Filetype: PDF
Size: 1MB
View at publisher