Header

UZH-Logo

Maintenance Infos

Accuracy of complete- and partial-arch impressions of actual intraoral scanning systems in vitro


Ender, Andreas; Zimmermann, Moritz; Mehl, Albert (2019). Accuracy of complete- and partial-arch impressions of actual intraoral scanning systems in vitro. International Journal of Computerized Dentistry, 22(1):11-19.

Abstract

OBJECTIVE
Intraoral scanners (IOSs) are widely used for obtaining digital dental models directly from the patient. Additionally, improvements in IOSs are made from generation to generation. The aim of this study was to evaluate the accuracy of new and actual IOS devices for complete- and partial-arch dental impressions in an in vitro setup.
MATERIALS AND METHODS
A custom maxillary complete-arch cast with teeth made from feldspar ceramic material was used as the reference cast and digitized with a reference scanner (ATOS III Triple Scan MV60). One conventional impression technique using polyvinylsiloxane (PVS) material (President) served as the control (CO), and eight different IOS devices comprising different hardware and software configurations (TRn: Trios 3; TRi: Trios 3 insane; CS: Carestream Dental CS 3600; MD: Medit i500; iT: iTero Element 2; OC4: Cerec Omnicam 4.6.1; OC5: Cerec Omnicam 5.0.0; PS: Primescan) were used to take complete-arch impressions from the reference cast. The impressions were repeated 10 times (n = 10) for each group. Conventional impressions were poured with type IV gypsum and digitized with a laboratory scanner (inEos X5). All datasets were obtained in standard tessellation language (STL) file format and cut to either complete-arch, anterior segment, or posterior segment areas for respective analysis. Values for trueness and precision for the respective areas were evaluated using a three-dimensional (3D) superimposition method with special 3D difference analysis software (GOM Inspect) using (90-10)/2 percentile values. Statistical analysis was performed using either one-way analysis of variance (ANOVA) or Kruskal-Wallis test (α = 0.05). Results are given as median and interquartile range [IQR] values in µm.
RESULTS
Statistically significant differences were found between test groups for complete- and partial-arch impression methods in vitro (p < 0.05). Values ranged from 16.3 [2.8] µm (CO) up to 89.8 [26.1] µm (OC4) for in vitro trueness, and from 10.6 [3.8] µm (CO) up to 58.6 [38.4] µm (iT) for in vitro precision for the complete-arch methods. The best values for trueness of partial-arch impressions were found for the posterior segment, with 9.7 [1.2] µm for the conventional impression method (CO), and 21.9 [1.5] µm (PS) for the digital impression method.
CONCLUSION
Within the limitations of this study, digital impressions obtained from specific IOSs are a valid alternative to conventional impressions for partial-arch segments. Complete-arch impressions are still challenging for IOS devices; however, certain devices were shown to be well within the required range for clinical quality. Further in vivo studies are needed to support these results.

Abstract

OBJECTIVE
Intraoral scanners (IOSs) are widely used for obtaining digital dental models directly from the patient. Additionally, improvements in IOSs are made from generation to generation. The aim of this study was to evaluate the accuracy of new and actual IOS devices for complete- and partial-arch dental impressions in an in vitro setup.
MATERIALS AND METHODS
A custom maxillary complete-arch cast with teeth made from feldspar ceramic material was used as the reference cast and digitized with a reference scanner (ATOS III Triple Scan MV60). One conventional impression technique using polyvinylsiloxane (PVS) material (President) served as the control (CO), and eight different IOS devices comprising different hardware and software configurations (TRn: Trios 3; TRi: Trios 3 insane; CS: Carestream Dental CS 3600; MD: Medit i500; iT: iTero Element 2; OC4: Cerec Omnicam 4.6.1; OC5: Cerec Omnicam 5.0.0; PS: Primescan) were used to take complete-arch impressions from the reference cast. The impressions were repeated 10 times (n = 10) for each group. Conventional impressions were poured with type IV gypsum and digitized with a laboratory scanner (inEos X5). All datasets were obtained in standard tessellation language (STL) file format and cut to either complete-arch, anterior segment, or posterior segment areas for respective analysis. Values for trueness and precision for the respective areas were evaluated using a three-dimensional (3D) superimposition method with special 3D difference analysis software (GOM Inspect) using (90-10)/2 percentile values. Statistical analysis was performed using either one-way analysis of variance (ANOVA) or Kruskal-Wallis test (α = 0.05). Results are given as median and interquartile range [IQR] values in µm.
RESULTS
Statistically significant differences were found between test groups for complete- and partial-arch impression methods in vitro (p < 0.05). Values ranged from 16.3 [2.8] µm (CO) up to 89.8 [26.1] µm (OC4) for in vitro trueness, and from 10.6 [3.8] µm (CO) up to 58.6 [38.4] µm (iT) for in vitro precision for the complete-arch methods. The best values for trueness of partial-arch impressions were found for the posterior segment, with 9.7 [1.2] µm for the conventional impression method (CO), and 21.9 [1.5] µm (PS) for the digital impression method.
CONCLUSION
Within the limitations of this study, digital impressions obtained from specific IOSs are a valid alternative to conventional impressions for partial-arch segments. Complete-arch impressions are still challenging for IOS devices; however, certain devices were shown to be well within the required range for clinical quality. Further in vivo studies are needed to support these results.

Statistics

Citations

Dimensions.ai Metrics
141 citations in Web of Science®
155 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1583 downloads since deposited on 13 Jan 2020
678 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Center for Dental Medicine > Clinic of Conservative and Preventive Dentistry
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Health Sciences > Dentistry (miscellaneous)
Physical Sciences > Computer Science Applications
Language:English
Date:2019
Deposited On:13 Jan 2020 15:20
Last Modified:23 Sep 2023 01:40
Publisher:Quintessence Publishing
ISSN:1463-4201
OA Status:Green
Free access at:PubMed ID. An embargo period may apply.
PubMed ID:30848250
  • Content: Published Version