Header

UZH-Logo

Maintenance Infos

Δ1-pyrroline-5-carboxylate synthase deficiency: neurodegeneration, cataracts and connective tissue manifestations combined with hyperammonaemia and reduced ornithine, citrulline, arginine and proline


Baumgartner, Matthias R; Rabier, Daniel; Nassogne, M-C; Dufier, J L; Padovani, J P; Kamoun, P; Valle, D; Saudubray, J M (2005). Δ1-pyrroline-5-carboxylate synthase deficiency: neurodegeneration, cataracts and connective tissue manifestations combined with hyperammonaemia and reduced ornithine, citrulline, arginine and proline. European Journal of Pediatrics, 164(1):31-36.

Abstract

Δ1-pyrroline-5-carboxylate synthase (P5CS) catalyses the reduction of glutamate to Δ1-pyrroline-5-carboxylate, a critical step in the biosynthesis of proline, ornithine and arginine. Recently, we reported a newly recognised inborn error due to deficiency of P5CS in two sibs, one presenting at birth with hypotonia, dysmorphic signs, pes planus and clonic seizures. Both developed progressive neurodegeneration and peripheral neuropathy, joint laxity, skin hyperelasticity and bilateral subcapsular cataracts. Their metabolic phenotype includes mild hyperammonaemia, hypo-ornithinaemia, hypocitrullinaemia, hypo-argininaemia and hypoprolinaemia. Incorporation of 3H-proline into protein was deficient in fibroblasts incubated with 3H-glutamate. Both patients are homozygous for the missense mutation R84Q in P5CS. Here, we describe the clinical phenotype of the sibs in detail and show that a relative deficiency of urea cycle intermediates (ornithine, citrulline and arginine) during fasting periods results in a paradoxical hyperammonaemia. Furthermore, we show the results of ornithine loading tests and indirect enzyme studies corroborating the biological significance of the defect in P5CS in vivo. Conclusion:The metabolic phenotype of Δ1-pyrroline-5-carboxylate synthase deficiency is easily missed. The combination of low levels of ornithine, citrulline, arginine and proline plus a tendency to hyperammonaemia or one of the above together with a clinical phenotype of neurodegeneration with peripheral neuropathy and/or cataracts and connective tissue manifestations should suggest this disorder. Early recognition would allow a therapeutic trial with citrulline and proline.

Abstract

Δ1-pyrroline-5-carboxylate synthase (P5CS) catalyses the reduction of glutamate to Δ1-pyrroline-5-carboxylate, a critical step in the biosynthesis of proline, ornithine and arginine. Recently, we reported a newly recognised inborn error due to deficiency of P5CS in two sibs, one presenting at birth with hypotonia, dysmorphic signs, pes planus and clonic seizures. Both developed progressive neurodegeneration and peripheral neuropathy, joint laxity, skin hyperelasticity and bilateral subcapsular cataracts. Their metabolic phenotype includes mild hyperammonaemia, hypo-ornithinaemia, hypocitrullinaemia, hypo-argininaemia and hypoprolinaemia. Incorporation of 3H-proline into protein was deficient in fibroblasts incubated with 3H-glutamate. Both patients are homozygous for the missense mutation R84Q in P5CS. Here, we describe the clinical phenotype of the sibs in detail and show that a relative deficiency of urea cycle intermediates (ornithine, citrulline and arginine) during fasting periods results in a paradoxical hyperammonaemia. Furthermore, we show the results of ornithine loading tests and indirect enzyme studies corroborating the biological significance of the defect in P5CS in vivo. Conclusion:The metabolic phenotype of Δ1-pyrroline-5-carboxylate synthase deficiency is easily missed. The combination of low levels of ornithine, citrulline, arginine and proline plus a tendency to hyperammonaemia or one of the above together with a clinical phenotype of neurodegeneration with peripheral neuropathy and/or cataracts and connective tissue manifestations should suggest this disorder. Early recognition would allow a therapeutic trial with citrulline and proline.

Statistics

Citations

Dimensions.ai Metrics
56 citations in Web of Science®
65 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Other titles:Delta1-pyrroline-5-carboxylate synthase deficiency: neurodegeneration, cataracts and connective tissue manifestations combined with hyperammonaemia and reduced ornithine, citrulline, arginine and proline
Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Children's Hospital Zurich > Medical Clinic
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Health Sciences > Pediatrics, Perinatology and Child Health
Language:English
Date:2005
Deposited On:04 Feb 2020 14:23
Last Modified:31 Jul 2020 03:45
Publisher:Springer
ISSN:0340-6199
OA Status:Closed
Publisher DOI:https://doi.org/10.1007/s00431-004-1545-3
PubMed ID:15517380

Download

Full text not available from this repository.
View at publisher

Get full-text in a library