Header

UZH-Logo

Maintenance Infos

Increased delta aminolevulinic acid and decreased pineal melatonin production. A common event in acute porphyria studies in the rat


Puy, H; Deybach, J C; Bogdan, A; Callebert, J; Baumgartner, M; Voisin, P; Nordmann, Y; Touitou, Y (1996). Increased delta aminolevulinic acid and decreased pineal melatonin production. A common event in acute porphyria studies in the rat. Journal of Clinical Investigation, 97(1):104-110.

Abstract

Tryptophan (TRP) is the precursor of melatonin, the primary secretory product of the pineal gland. Hepatic heme deficiency decreases the activity of liver tryptophan pyrrolase, leading to increased plasma TRP and serotonin. As a paradox, patients with attacks of acute intermittent porphyria (AIP), exhibit low nocturnal plasma melatonin levels. This study using a rat experimental model was designed to produce a pattern of TRP and melatonin production similar to that in AIP patients. Pineal melatonin production was measured in response to: (a) a heme synthesis inhibitor, succinylacetone, (b) a heme precursor, delta-aminolevulinic acid (Ala), (c) a structural analogue of Ala, gamma-aminobutyric acid. Studies were performed in intact rats, perifused pineal glands, and pinealocyte cultures. Ala, succinylacetone, and gamma-aminobutyric acid significantly decreased plasma melatonin levels independently of blood TRP concentration. In the pineal gland, the key enzyme activities of melatonin synthesis were unchanged for hydroxyindole-O-methyltransferase and decreased for N-acetyltransferase. Our results strongly suggest that Ala overproduced by the liver acts by mimicking the effect of gamma-aminobutyric acid on pineal melatonin in AIP. They also support the view that Ala acts as a toxic element in the pathophysiology of AIP.

Abstract

Tryptophan (TRP) is the precursor of melatonin, the primary secretory product of the pineal gland. Hepatic heme deficiency decreases the activity of liver tryptophan pyrrolase, leading to increased plasma TRP and serotonin. As a paradox, patients with attacks of acute intermittent porphyria (AIP), exhibit low nocturnal plasma melatonin levels. This study using a rat experimental model was designed to produce a pattern of TRP and melatonin production similar to that in AIP patients. Pineal melatonin production was measured in response to: (a) a heme synthesis inhibitor, succinylacetone, (b) a heme precursor, delta-aminolevulinic acid (Ala), (c) a structural analogue of Ala, gamma-aminobutyric acid. Studies were performed in intact rats, perifused pineal glands, and pinealocyte cultures. Ala, succinylacetone, and gamma-aminobutyric acid significantly decreased plasma melatonin levels independently of blood TRP concentration. In the pineal gland, the key enzyme activities of melatonin synthesis were unchanged for hydroxyindole-O-methyltransferase and decreased for N-acetyltransferase. Our results strongly suggest that Ala overproduced by the liver acts by mimicking the effect of gamma-aminobutyric acid on pineal melatonin in AIP. They also support the view that Ala acts as a toxic element in the pathophysiology of AIP.

Statistics

Citations

Dimensions.ai Metrics
31 citations in Web of Science®
36 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

4 downloads since deposited on 31 Jan 2020
4 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Children's Hospital Zurich > Medical Clinic
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Health Sciences > General Medicine
Language:English
Date:1996
Deposited On:31 Jan 2020 12:29
Last Modified:31 Jul 2020 03:45
Publisher:American Society for Clinical Investigation
ISSN:0021-9738
OA Status:Hybrid
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1172/jci118376

Download

Hybrid Open Access

Download PDF  'Increased delta aminolevulinic acid and decreased pineal melatonin production. A common event in acute porphyria studies in the rat'.
Preview
Content: Published Version
Filetype: PDF
Size: 172kB
View at publisher