Navigation auf zora.uzh.ch

Search ZORA

ZORA (Zurich Open Repository and Archive)

DDOS: due to massive botnet requests against our ‘Advanced Search’ we have restricted access to UZH (local and VPN). Thank you for your understanding.

Reconstruction of the 1941 GLOF process chain at Lake Palcacocha (Cordillera Blanca, Peru)

Mergili, Martin; Pudasaini, Shiva P; Emmer, Adam; Fischer, Jan-Thomas; Cochachin, Alejo; Frey, Holger (2020). Reconstruction of the 1941 GLOF process chain at Lake Palcacocha (Cordillera Blanca, Peru). Hydrology and Earth System Sciences, 24(1):93-114.

Abstract

The Cordillera Blanca in Peru has been the scene of rapid deglaciation for many decades. One of numerous lakes formed in the front of the retreating glaciers is the moraine-dammed Lake Palcacocha, which drained suddenly due to an unknown cause in 1941. The resulting Glacial Lake Outburst Flood (GLOF) led to dam failure and complete drainage of Lake Jircacocha downstream, and to major destruction and thousands of fatalities in the city of Huaráz at a distance of 23 km. We chose an integrated approach to revisit the 1941 event in terms of topographic reconstruction
and numerical back-calculation with the GIS-based open-source mass flow/process chain simulation framework r.avaflow, which builds on an enhanced version of the Pudasaini (2012) two-phase flow model. Thereby we consider four scenarios: (A) and (AX) breach of the moraine dam of Lake Palcacocha due to retrogressive erosion, assuming two different fluid characteristics; (B) failure of the moraine dam caused by the impact of a landslide on the lake; and (C) geomechanical failure and collapse of the moraine dam. The simulations largely yield empirically adequate results with physically plausible parameters, taking the documentation of the 1941 event and previous calculations of future scenarios as reference. Most simulation scenarios indicate travel times between 36 and 70 min to reach
Huaráz, accompanied with peak discharges above 10 000 m3 s−1. The results of the scenarios indicate that the most likely initiation mechanism would be retrogressive erosion, possibly triggered by a minor impact wave and/or facilitated by a weak stability condition of the moraine dam. However, the involvement of Lake Jircacocha disguises part of the signal of process initiation farther downstream. Predictive simulations of possible future events have to be based on a
larger set of back-calculated GLOF process chains, taking into account the expected parameter uncertainties and appropriate strategies to deal with critical threshold effects.

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Scopus Subject Areas:Physical Sciences > Water Science and Technology
Physical Sciences > Earth and Planetary Sciences (miscellaneous)
Language:English
Date:9 January 2020
Deposited On:15 Jan 2020 08:22
Last Modified:21 Jun 2025 02:07
Publisher:Copernicus Publications
ISSN:1027-5606
OA Status:Gold
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.5194/hess-24-93-2020
Download PDF  'Reconstruction of the 1941 GLOF process chain at Lake Palcacocha (Cordillera Blanca, Peru)'.
Preview
  • Content: Published Version
  • Language: English
  • Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)

Metadata Export

Statistics

Citations

Dimensions.ai Metrics
87 citations in Web of Science®
89 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

111 downloads since deposited on 15 Jan 2020
13 downloads since 12 months
Detailed statistics

Authors, Affiliations, Collaborations

Similar Publications