Header

UZH-Logo

Maintenance Infos

Periodontal bacterial supernatants modify differentiation, migration and inflammatory cytokine expression in human periodontal ligament stem cells


Ramenzoni, Liza L; Russo, Giancarlo; Moccia, Maria D; Attin, Thomas; Schmidlin, Patrick R (2019). Periodontal bacterial supernatants modify differentiation, migration and inflammatory cytokine expression in human periodontal ligament stem cells. PLoS ONE, 14(7):e0219181.

Abstract

Periodontal ligament stem cells (PDLSC) play an important role in periodontal tissue homeostasis/turnover and could be applied in cell-based periodontal regenerative therapy. Bacterial supernatants secreted from diverse periodontal bacteria induce the production of cytokines that contribute to local periodontal tissue destruction. However, little is known about the impact of whole bacterial toxins on the biological behavior of PDLSC. Therefore this study investigated whether proliferation, migration, inflammatory cytokines expression and transcriptional profile would be affected by exposure to endotoxins from bacterial species found in the subgingival plaque. PDLSC were cultured with the following bacterial supernatants: S. mutans, S. anginosus, P. intermedia, F. nucleatum, P. gingivalis and T. denticola. These supernatants were prepared in dilutions of 1:1000, 1:500, 1:300 and 1:50. Using quantitative RT-PCR, gene expression of selected inflammatory cytokines (IL-6, IL-8 and IL-1β) and cell-surface receptors (TLR2, TLR4) showed upregulation of ≈2.0- to 3.0-fold, when exposed to P. intermedia, F. nucleatum, P. gingivalis and T. denticola. However, supernatants did not affect proliferation (MTT) and migration (wound scratch assays) of PDLSC. Next generation RNA sequencing confirmed modified lineage commitment of PDLSC by stimulating chondrogenesis, adipogenesis and inhibition of osteogenesis under P. gingivalis supernatant treatment compared to control. Taken together, this study shows stem cell immunomodulatory response to different periodontal bacteria supernatant and suggests that stem cell transcriptional capacity, migration/proliferation and osteogenesis may differ in the presence of those pathogens. These results bring into question stem cell contribution to periodontal tissue regeneration and onset of inflammation.

Abstract

Periodontal ligament stem cells (PDLSC) play an important role in periodontal tissue homeostasis/turnover and could be applied in cell-based periodontal regenerative therapy. Bacterial supernatants secreted from diverse periodontal bacteria induce the production of cytokines that contribute to local periodontal tissue destruction. However, little is known about the impact of whole bacterial toxins on the biological behavior of PDLSC. Therefore this study investigated whether proliferation, migration, inflammatory cytokines expression and transcriptional profile would be affected by exposure to endotoxins from bacterial species found in the subgingival plaque. PDLSC were cultured with the following bacterial supernatants: S. mutans, S. anginosus, P. intermedia, F. nucleatum, P. gingivalis and T. denticola. These supernatants were prepared in dilutions of 1:1000, 1:500, 1:300 and 1:50. Using quantitative RT-PCR, gene expression of selected inflammatory cytokines (IL-6, IL-8 and IL-1β) and cell-surface receptors (TLR2, TLR4) showed upregulation of ≈2.0- to 3.0-fold, when exposed to P. intermedia, F. nucleatum, P. gingivalis and T. denticola. However, supernatants did not affect proliferation (MTT) and migration (wound scratch assays) of PDLSC. Next generation RNA sequencing confirmed modified lineage commitment of PDLSC by stimulating chondrogenesis, adipogenesis and inhibition of osteogenesis under P. gingivalis supernatant treatment compared to control. Taken together, this study shows stem cell immunomodulatory response to different periodontal bacteria supernatant and suggests that stem cell transcriptional capacity, migration/proliferation and osteogenesis may differ in the presence of those pathogens. These results bring into question stem cell contribution to periodontal tissue regeneration and onset of inflammation.

Statistics

Citations

Dimensions.ai Metrics
19 citations in Web of Science®
18 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

23 downloads since deposited on 22 Jan 2020
4 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Center for Dental Medicine > Clinic of Conservative and Preventive Dentistry
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Life Sciences > General Biochemistry, Genetics and Molecular Biology
Life Sciences > General Agricultural and Biological Sciences
Health Sciences > Multidisciplinary
Language:English
Date:3 July 2019
Deposited On:22 Jan 2020 12:44
Last Modified:22 Apr 2024 01:46
Publisher:Public Library of Science (PLoS)
ISSN:1932-6203
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1371/journal.pone.0219181
PubMed ID:31269072
  • Content: Published Version
  • Language: English
  • Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)