Header

UZH-Logo

Maintenance Infos

Microbial life cycles link global modularity in regulation to mosaic evolution


van Gestel, Jordi; Ackermann, Martin; Wagner, Andreas (2019). Microbial life cycles link global modularity in regulation to mosaic evolution. Nature Ecology and Evolution, 3(8):1184-1196.

Abstract

Microbes are exposed to changing environments, to which they can respond by adopting various lifestyles such as swimming, colony formation or dormancy. These lifestyles are often studied in isolation, thereby giving a fragmented view of the life cycle as a whole. Here, we study lifestyles in the context of this whole. We first use machine learning to reconstruct the expression changes underlying life cycle progression in the bacterium Bacillus subtilis, based on hundreds of previously acquired expression profiles. This yields a timeline that reveals the modular organization of the life cycle. By analysing over 380 Bacillales genomes, we then show that life cycle modularity gives rise to mosaic evolution in which life stages such as motility and sporulation are conserved and lost as discrete units. We postulate that this mosaic conservation pattern results from habitat changes that make these life stages obsolete or detrimental. Indeed, when evolving eight distinct Bacillales strains and species under laboratory conditions that favour colony growth, we observe rapid and parallel losses of the sporulation life stage across species, induced by mutations that affect the same global regulator. We conclude that a life cycle perspective is pivotal to understanding the causes and consequences of modularity in both regulation and evolution.

Abstract

Microbes are exposed to changing environments, to which they can respond by adopting various lifestyles such as swimming, colony formation or dormancy. These lifestyles are often studied in isolation, thereby giving a fragmented view of the life cycle as a whole. Here, we study lifestyles in the context of this whole. We first use machine learning to reconstruct the expression changes underlying life cycle progression in the bacterium Bacillus subtilis, based on hundreds of previously acquired expression profiles. This yields a timeline that reveals the modular organization of the life cycle. By analysing over 380 Bacillales genomes, we then show that life cycle modularity gives rise to mosaic evolution in which life stages such as motility and sporulation are conserved and lost as discrete units. We postulate that this mosaic conservation pattern results from habitat changes that make these life stages obsolete or detrimental. Indeed, when evolving eight distinct Bacillales strains and species under laboratory conditions that favour colony growth, we observe rapid and parallel losses of the sporulation life stage across species, induced by mutations that affect the same global regulator. We conclude that a life cycle perspective is pivotal to understanding the causes and consequences of modularity in both regulation and evolution.

Statistics

Citations

Dimensions.ai Metrics
1 citation in Web of Science®
1 citation in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 07 Feb 2020
1 download since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Language:English
Date:1 August 2019
Deposited On:07 Feb 2020 09:01
Last Modified:07 Feb 2020 09:01
Publisher:Nature Publishing Group
ISSN:2397-334X
OA Status:Closed
Publisher DOI:https://doi.org/10.1038/s41559-019-0939-6

Download

Closed Access: Download allowed only for UZH members