Header

UZH-Logo

Maintenance Infos

Diminished large-scale functional brain networks in absolute pitch during the perception of naturalistic music and audiobooks


Brauchli, Christian; Leipold, Simon; Jäncke, Lutz (2019). Diminished large-scale functional brain networks in absolute pitch during the perception of naturalistic music and audiobooks. NeuroImage:116513.

Abstract

Previous studies have reported the effects of absolute pitch (AP) and musical proficiency on the functioning of specific brain regions or distinct subnetworks, but they provided an incomplete account of effects of AP and musical proficiency on whole-brain networks. In this study, we used EEG to estimate source-space whole-brain functional connectivity in a large sample comprising AP musicians (n = 46), relative pitch (RP) musicians (n = 45), and Non-musicians (n = 34) during resting state, naturalistic music listening, and audiobook listening. First, we assessed the global network density of the participants' functional networks in these conditions. As revealed by cluster-based permutation testing, AP musicians showed a decreased mean degree compared to Non-musicians whereas RP musicians showed an intermediate mean degree not statistically different from Non-musicians or AP-musicians. This effect was present during naturalistic music and audiobook listening, but, crucially, not during resting state. Second, we identified subnetworks that drive group differences in global network density using the network-based statistic approach. We found that AP musicians showed decreased functional connectivity in major hubs of the default mode network during both music and audiobook listening compared to Non-musicians. Third, we assessed group differences in global network topology while controlling for network density. We did not find evidence for group differences in the clustering coefficient and characteristic path length. Taken together, we found first evidence of diminished whole-brain functional networks in AP musicians during the perception of naturalistic auditory stimuli. These differences might reflect a complex interplay between AP ability, musical proficiency, music processing, and auditory processing per se.

Abstract

Previous studies have reported the effects of absolute pitch (AP) and musical proficiency on the functioning of specific brain regions or distinct subnetworks, but they provided an incomplete account of effects of AP and musical proficiency on whole-brain networks. In this study, we used EEG to estimate source-space whole-brain functional connectivity in a large sample comprising AP musicians (n = 46), relative pitch (RP) musicians (n = 45), and Non-musicians (n = 34) during resting state, naturalistic music listening, and audiobook listening. First, we assessed the global network density of the participants' functional networks in these conditions. As revealed by cluster-based permutation testing, AP musicians showed a decreased mean degree compared to Non-musicians whereas RP musicians showed an intermediate mean degree not statistically different from Non-musicians or AP-musicians. This effect was present during naturalistic music and audiobook listening, but, crucially, not during resting state. Second, we identified subnetworks that drive group differences in global network density using the network-based statistic approach. We found that AP musicians showed decreased functional connectivity in major hubs of the default mode network during both music and audiobook listening compared to Non-musicians. Third, we assessed group differences in global network topology while controlling for network density. We did not find evidence for group differences in the clustering coefficient and characteristic path length. Taken together, we found first evidence of diminished whole-brain functional networks in AP musicians during the perception of naturalistic auditory stimuli. These differences might reflect a complex interplay between AP ability, musical proficiency, music processing, and auditory processing per se.

Statistics

Citations

Dimensions.ai Metrics

Altmetrics

Downloads

4 downloads since deposited on 22 Jan 2020
4 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:06 Faculty of Arts > Institute of Psychology
08 Research Priority Programs > Dynamics of Healthy Aging
Dewey Decimal Classification:150 Psychology
Language:English
Date:31 December 2019
Deposited On:22 Jan 2020 13:58
Last Modified:17 Feb 2020 09:39
Publisher:Elsevier
ISSN:1053-8119
OA Status:Green
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1016/j.neuroimage.2019.116513
PubMed ID:31901419
Project Information:
  • : FunderSNSF
  • : Grant ID320030_163149
  • : Project TitleDie neuronalen Grundlagen des absoluten Gehörs und der Ton-Farbsynästhesie: Zwei Seiten einer Medaille?

Download

Green Open Access

Download PDF  'Diminished large-scale functional brain networks in absolute pitch during the perception of naturalistic music and audiobooks'.
Preview
Content: Accepted Version
Language: English
Filetype: PDF
Size: 2MB
View at publisher
Licence: Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)