Header

UZH-Logo

Maintenance Infos

The effect of varying multidrug-resistence (MDR) definitions on rates of MDR gram-negative rods


Wolfensberger, Aline; Kuster, Stefan P; Marchesi, Martina; Zbinden, Reinhard; Hombach, Michael (2019). The effect of varying multidrug-resistence (MDR) definitions on rates of MDR gram-negative rods. Antimicrobial Resistance and Infection Control, 8:193.

Abstract

Background

A multitude of definitions determining multidrug resistance (MDR) of Gram-negative organisms exist worldwide. The definitions differ depending on their purpose and on the issueing country or organization. The MDR definitions of the European Centre for Disease Prevention and Control (ECDC) were primarily chosen to harmonize epidemiological surveillance. The German Commission of Hospital Hygiene and Infection Prevention (KRINKO) issued a national guideline which is mainly used to guide infection prevention and control (IPC) measures. The Swiss University Hospital Zurich (UHZ) - in absentia of national guidelines - developed its own definition for IPC purposes. In this study we aimed to determine the effects of different definitions of multidrug-resistance on rates of Gram-negative multidrug-resistant organisms (GN-MDRO).

Methods

MDR definitions of the ECDC, the German KRINKO and the Swiss University Hospital Zurich were applied on a dataset comprising isolates of Escherichia coli, Klebsiella pneumoniae, Enterobacter sp., Pseudomonas aeruginosa, and Acinetobacter baumannii complex. Rates of GN-MDRO were compared and the percentage of patients with a GN-MDRO was calculated.

Results

In total 11'407 isolates from a 35 month period were included. For Enterobacterales and P. aeruginosa, highest MDR-rates resulted from applying the 'ECDC-MDR' definition. 'ECDC-MDR' rates were up to four times higher compared to 'KRINKO-3/4MRGN' rates, and up to six times higher compared to UHZ rates. Lowest rates were observed when applying the 'KRINKO-4MRGN' definitions. Comparing the 'KRINKO-3/4MRGN' with the UHZ definitions did not show uniform trends, but yielded higher rates for E. coli and lower rates for P. aeruginosa. On the patient level, the percentages of GN-MDRO carriers were 2.1, 5.5, 6.6, and 18.2% when applying the 'KRINKO-4MRGN', 'UHZ-MDR', 'KRINKO-3/4MRGN', and the 'ECDC-MDR' definition, respectively.

Conclusions

Different MDR-definitions lead to considerable variation in rates of GN-MDRO. Differences arise from the number of antibiotic categories required to be resistant, the categories and drugs considered relevant, and the antibiotic panel tested. MDR definitions should be chosen carefully depending on their purpose and local resistance rates, as definitions guiding isolation precautions have direct effects on costs and patient care.

Abstract

Background

A multitude of definitions determining multidrug resistance (MDR) of Gram-negative organisms exist worldwide. The definitions differ depending on their purpose and on the issueing country or organization. The MDR definitions of the European Centre for Disease Prevention and Control (ECDC) were primarily chosen to harmonize epidemiological surveillance. The German Commission of Hospital Hygiene and Infection Prevention (KRINKO) issued a national guideline which is mainly used to guide infection prevention and control (IPC) measures. The Swiss University Hospital Zurich (UHZ) - in absentia of national guidelines - developed its own definition for IPC purposes. In this study we aimed to determine the effects of different definitions of multidrug-resistance on rates of Gram-negative multidrug-resistant organisms (GN-MDRO).

Methods

MDR definitions of the ECDC, the German KRINKO and the Swiss University Hospital Zurich were applied on a dataset comprising isolates of Escherichia coli, Klebsiella pneumoniae, Enterobacter sp., Pseudomonas aeruginosa, and Acinetobacter baumannii complex. Rates of GN-MDRO were compared and the percentage of patients with a GN-MDRO was calculated.

Results

In total 11'407 isolates from a 35 month period were included. For Enterobacterales and P. aeruginosa, highest MDR-rates resulted from applying the 'ECDC-MDR' definition. 'ECDC-MDR' rates were up to four times higher compared to 'KRINKO-3/4MRGN' rates, and up to six times higher compared to UHZ rates. Lowest rates were observed when applying the 'KRINKO-4MRGN' definitions. Comparing the 'KRINKO-3/4MRGN' with the UHZ definitions did not show uniform trends, but yielded higher rates for E. coli and lower rates for P. aeruginosa. On the patient level, the percentages of GN-MDRO carriers were 2.1, 5.5, 6.6, and 18.2% when applying the 'KRINKO-4MRGN', 'UHZ-MDR', 'KRINKO-3/4MRGN', and the 'ECDC-MDR' definition, respectively.

Conclusions

Different MDR-definitions lead to considerable variation in rates of GN-MDRO. Differences arise from the number of antibiotic categories required to be resistant, the categories and drugs considered relevant, and the antibiotic panel tested. MDR definitions should be chosen carefully depending on their purpose and local resistance rates, as definitions guiding isolation precautions have direct effects on costs and patient care.

Statistics

Citations

Dimensions.ai Metrics
23 citations in Web of Science®
27 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

42 downloads since deposited on 07 Feb 2020
23 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Medical Microbiology
04 Faculty of Medicine > University Hospital Zurich > Clinic for Infectious Diseases
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Health Sciences > Public Health, Environmental and Occupational Health
Health Sciences > Microbiology (medical)
Health Sciences > Infectious Diseases
Health Sciences > Pharmacology (medical)
Language:English
Date:28 November 2019
Deposited On:07 Feb 2020 09:08
Last Modified:09 Dec 2023 08:10
Publisher:BioMed Central
ISSN:2047-2994
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1186/s13756-019-0614-3
PubMed ID:31798839
  • Content: Published Version
  • Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)