Navigation auf zora.uzh.ch

Search

ZORA (Zurich Open Repository and Archive)

Phylogenomic analyses reveal an exceptionally high number of evolutionary shifts in a florally diverse clade of African legumes

Ojeda, Dario I; Koenen, Erik; Cervantes, Sandra; de la Estrella, Manuel; Banguera-Hinestroza, Eulalia; Janssens, Steven B; Migliore, Jérémy; Demenou, Boris B; Bruneau, Anne; Forest, Félix; Hardy, Olivier J (2019). Phylogenomic analyses reveal an exceptionally high number of evolutionary shifts in a florally diverse clade of African legumes. Molecular Phylogenetics and Evolution, 137:156-167.

Abstract

Detarioideae is well known for its high diversity of floral traits, including flower symmetry, number of organs, and petal size and morphology. This diversity has been characterized and studied at higher taxonomic levels, but limited analyses have been performed among closely related genera with contrasting floral traits due to the lack of fully resolved phylogenetic relationships. Here, we used four representative transcriptomes to develop an exome capture (target enrichment) bait for the entire subfamily and applied it to the Anthonotha clade using a complete data set (61 specimens) representing all extant floral diversity. Our phylogenetic analyses recovered congruent topologies using ML and Bayesian methods. Anthonotha was recovered as monophyletic contrary to the remaining three genera (Englerodendron, Isomacrolobium and Pseudomacrolobium), which form a monophyletic group sister to Anthonotha. We inferred a total of 35 transitions for the seven floral traits (pertaining to flower symmetry, petals, stamens and staminodes) that we analyzed, suggesting that at least 30% of the species in this group display transitions from the ancestral condition reconstructed for the Anthonotha clade. The main transitions were towards a reduction in the number of organs (petals, stamens and staminodes). Despite the high number of transitions, our analyses indicate that the seven characters are evolving independently in these lineages. Petal morphology is the most labile floral trait with a total of seven independent transitions in number and seven independent transitions to modification in petal types. The diverse petal morphology along the dorsoventral axis of symmetry within the flower is not associated with differences at the micromorphology of petal surface, suggesting that in this group all petals within the flower might possess the same petal identity at the molecular level. Our results provide a solid evolutionary framework for further detailed analyses of the molecular basis of petal identity.

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Systematic and Evolutionary Botany
07 Faculty of Science > Zurich-Basel Plant Science Center
Dewey Decimal Classification:580 Plants (Botany)
Scopus Subject Areas:Life Sciences > Ecology, Evolution, Behavior and Systematics
Life Sciences > Molecular Biology
Life Sciences > Genetics
Uncontrolled Keywords:Genetics, Ecology, Evolution, Behavior and Systematics, Molecular Biology
Language:English
Date:1 August 2019
Deposited On:07 Feb 2020 09:47
Last Modified:04 Sep 2024 03:45
Publisher:Elsevier
ISSN:1055-7903
OA Status:Hybrid
Publisher DOI:https://doi.org/10.1016/j.ympev.2019.05.002
PubMed ID:31075505
Download PDF  'Phylogenomic analyses reveal an exceptionally high number of evolutionary shifts in a florally diverse clade of African legumes'.
Preview
  • Content: Published Version
  • Licence: Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

Metadata Export

Statistics

Citations

Dimensions.ai Metrics
18 citations in Web of Science®
19 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

47 downloads since deposited on 07 Feb 2020
11 downloads since 12 months
Detailed statistics

Authors, Affiliations, Collaborations

Similar Publications