Header

UZH-Logo

Maintenance Infos

Numerical Methods for Simulating Star Formation


Teyssier, Romain; Commerçon, Benoît (2019). Numerical Methods for Simulating Star Formation. Frontiers in Astronomy and Space Sciences:6:51.

Abstract

We review the numerical techniques for ideal and non-ideal magneto-hydrodynamics (MHD) used in the context of star formation simulations. We outline the specific challenges offered by modeling star forming environments, which are dominated by supersonic and super-Alfvénic turbulence in a radiative, self-gravitating fluid. These conditions are rather unique in physics and engineering and pose particularly severe restrictions on the robustness and accuracy of numerical codes. One striking aspect is the formation of collapsing fluid elements leading to the formation of singularities that represent point-like objects, namely the proto-stars. Although a few studies have attempted to resolve the formation of the first and second Larson's cores, resolution limitations force us to use sink particle techniques, with sub-grid models to compute the accretion rates of mass, momentum and energy, as well as their ejection rate due to radiation and jets from the proto-stars. We discuss the most popular discretisation techniques used in the community, namely smoothed particle hydrodynamics, finite difference and finite volume methods, stressing the importance to maintain a divergence-free magnetic field. We discuss how to estimate the truncation error of a given numerical scheme, and its importance in setting the magnitude of the numerical diffusion. This can have a strong impact on the outcome of these MHD simulations, where both viscosity and resistivity are implemented at the grid scale. We then present various numerical techniques to model non-ideal MHD effects, such as Ohmic and ambipolar diffusion, as well as the Hall effect. These important physical ingredients are posing strong challenges in term of resolution and time stepping. For the latter, several strategies are discussed to overcome the limitations due to prohibitively small time steps. An important aspect of star formation simulations is the radiation field. We discuss the current state-of-the-art, with a variety of techniques offering pros and cons in different conditions. Finally, we present more advanced strategies to mitigate the adverse effect of finite numerical resolution, which are very popular in the context of supersonic, self-gravitating fluids, namely adaptive mesh refinement, moving meshes, Smoothed Particle Hydrodynamics and high-order methods. Advances in these three directions are likely to trigger immense progress in the future of our field. We then illustrate the different aspects of this review by presenting recent results on supersonic MHD turbulence and magnetized collapse calculations.

Abstract

We review the numerical techniques for ideal and non-ideal magneto-hydrodynamics (MHD) used in the context of star formation simulations. We outline the specific challenges offered by modeling star forming environments, which are dominated by supersonic and super-Alfvénic turbulence in a radiative, self-gravitating fluid. These conditions are rather unique in physics and engineering and pose particularly severe restrictions on the robustness and accuracy of numerical codes. One striking aspect is the formation of collapsing fluid elements leading to the formation of singularities that represent point-like objects, namely the proto-stars. Although a few studies have attempted to resolve the formation of the first and second Larson's cores, resolution limitations force us to use sink particle techniques, with sub-grid models to compute the accretion rates of mass, momentum and energy, as well as their ejection rate due to radiation and jets from the proto-stars. We discuss the most popular discretisation techniques used in the community, namely smoothed particle hydrodynamics, finite difference and finite volume methods, stressing the importance to maintain a divergence-free magnetic field. We discuss how to estimate the truncation error of a given numerical scheme, and its importance in setting the magnitude of the numerical diffusion. This can have a strong impact on the outcome of these MHD simulations, where both viscosity and resistivity are implemented at the grid scale. We then present various numerical techniques to model non-ideal MHD effects, such as Ohmic and ambipolar diffusion, as well as the Hall effect. These important physical ingredients are posing strong challenges in term of resolution and time stepping. For the latter, several strategies are discussed to overcome the limitations due to prohibitively small time steps. An important aspect of star formation simulations is the radiation field. We discuss the current state-of-the-art, with a variety of techniques offering pros and cons in different conditions. Finally, we present more advanced strategies to mitigate the adverse effect of finite numerical resolution, which are very popular in the context of supersonic, self-gravitating fluids, namely adaptive mesh refinement, moving meshes, Smoothed Particle Hydrodynamics and high-order methods. Advances in these three directions are likely to trigger immense progress in the future of our field. We then illustrate the different aspects of this review by presenting recent results on supersonic MHD turbulence and magnetized collapse calculations.

Statistics

Citations

Dimensions.ai Metrics
8 citations in Web of Science®
8 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

40 downloads since deposited on 14 Feb 2020
33 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute for Computational Science
Dewey Decimal Classification:530 Physics
Scopus Subject Areas:Physical Sciences > Astronomy and Astrophysics
Language:English
Date:24 July 2019
Deposited On:14 Feb 2020 08:27
Last Modified:22 Apr 2020 22:44
Publisher:Frontiers Research Foundation
ISSN:2296-987X
OA Status:Gold
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.3389/fspas.2019.00051

Download

Gold Open Access

Download PDF  'Numerical Methods for Simulating Star Formation'.
Preview
Content: Published Version
Filetype: PDF
Size: 3MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)