Header

UZH-Logo

Maintenance Infos

Influence of CAD/CAM Fabrication and Sintering Procedures on the Fracture Load of Full-Contour Monolithic Zirconia Crowns as a Function of Material Thickness


Zimmermann, M; Ender, A; Mehl, A (2020). Influence of CAD/CAM Fabrication and Sintering Procedures on the Fracture Load of Full-Contour Monolithic Zirconia Crowns as a Function of Material Thickness. Operative Dentistry, 45(2):219-226.

Abstract

OBJECTIVE
The purpose of this in vitro study was to analyze the effect of computer-aided design/computer-aided manufacturing (CAD/CAM) fabrication and sintering procedures on the fracture load of monolithic zirconia crowns with different material thicknesses adhesively seated to methacrylate dies fabricated with stereolithography technology.
METHOD
Monolithic zirconia crowns were fabricated from inCoris TZI C material with a chairside CAD/CAM system (CEREC MCXL) comprising three material thicknesses (0.5/1.0/1.5 mm, n=8 each). Two CAD/CAM fabrication procedures (milling, MI; grinding, GR), two chairside sintering procedures (superspeed, SS; speedfire sintering, SF), and one labside sintering procedure (classic, CL) were evaluated. In total, 144 crowns were fabricated. Restorations were adhesively seated to methacrylate dies fabricated with SLA technology. Thermomechanical cycling (TCML) was performed before fracture testing. Loading forces until fracture were registered and statistically analyzed with one-way analysis of variance (ANOVA), post hoc Scheffé test, and three-way ANOVA (α=0.05).
RESULTS
Test groups showed statistically significant differences (p<0.05). The highest mean value was found for 1.5-mm crowns of group GR_SF with 3678.6 ± 363.9 N. The lowest mean value was found for group 0.5-mm crowns of group MI_SF with 382.4 ± 30.7 N. There was a significant three-way interaction effect between thickness, sintering, and processing [F(4,126)=9.542; p<0.001; three-way ANOVA, significance level α=0.05].
CONCLUSIONS
CAD/CAM fabrication and sintering procedures influence the maximum loading force of monolithic zirconia crowns with different material thicknesses. A material thickness of 0.5 mm should be considered as a critical thickness for monolithic zirconia crown restorations.

Abstract

OBJECTIVE
The purpose of this in vitro study was to analyze the effect of computer-aided design/computer-aided manufacturing (CAD/CAM) fabrication and sintering procedures on the fracture load of monolithic zirconia crowns with different material thicknesses adhesively seated to methacrylate dies fabricated with stereolithography technology.
METHOD
Monolithic zirconia crowns were fabricated from inCoris TZI C material with a chairside CAD/CAM system (CEREC MCXL) comprising three material thicknesses (0.5/1.0/1.5 mm, n=8 each). Two CAD/CAM fabrication procedures (milling, MI; grinding, GR), two chairside sintering procedures (superspeed, SS; speedfire sintering, SF), and one labside sintering procedure (classic, CL) were evaluated. In total, 144 crowns were fabricated. Restorations were adhesively seated to methacrylate dies fabricated with SLA technology. Thermomechanical cycling (TCML) was performed before fracture testing. Loading forces until fracture were registered and statistically analyzed with one-way analysis of variance (ANOVA), post hoc Scheffé test, and three-way ANOVA (α=0.05).
RESULTS
Test groups showed statistically significant differences (p<0.05). The highest mean value was found for 1.5-mm crowns of group GR_SF with 3678.6 ± 363.9 N. The lowest mean value was found for group 0.5-mm crowns of group MI_SF with 382.4 ± 30.7 N. There was a significant three-way interaction effect between thickness, sintering, and processing [F(4,126)=9.542; p<0.001; three-way ANOVA, significance level α=0.05].
CONCLUSIONS
CAD/CAM fabrication and sintering procedures influence the maximum loading force of monolithic zirconia crowns with different material thicknesses. A material thickness of 0.5 mm should be considered as a critical thickness for monolithic zirconia crown restorations.

Statistics

Citations

Dimensions.ai Metrics
1 citation in Web of Science®
2 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

3 downloads since deposited on 30 Jan 2020
3 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Center for Dental Medicine > Clinic of Conservative and Preventive Dentistry
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Health Sciences > General Dentistry
Language:English
Date:1 March 2020
Deposited On:30 Jan 2020 12:46
Last Modified:30 Jul 2020 19:58
Publisher:Academy of Operative Dentistry
ISSN:0361-7734
OA Status:Closed
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.2341/19-086-L
PubMed ID:31738694

Download

Closed Access: Download allowed only for UZH members