Header

UZH-Logo

Maintenance Infos

OCR4all - an open-source tool providing a (semi-)automatic OCR workflow for historical printings


Reul, Christian; Christ, Dennis; Hartelt, Alexander; Balbach, Nico; Wehner, Maximilian; Springmann, Uwe; Wick, Christoph; Grundig, Christine; Büttner, Andreas; Puppe, Frank (2019). OCR4all - an open-source tool providing a (semi-)automatic OCR workflow for historical printings. Applied Sciences, 9(22):1-30.

Abstract

Optical Character Recognition (OCR) on historical printings is a challenging task mainly due to the complexity of the layout and the highly variant typography. Nevertheless, in the last few years, great progress has been made in the area of historical OCR, resulting in several powerful open-source tools for preprocessing, layout analysis and segmentation, character recognition, and post-processing. The drawback of these tools often is their limited applicability by non-technical users like humanist scholars and in particular the combined use of several tools in a workflow. In this paper, we present an open-source OCR software called OCR4all, which combines state-of-the-art OCR components and continuous model training into a comprehensive workflow. While a variety of materials can already be processed fully automatically, books with more complex layouts require manual intervention by the users. This is mostly due to the fact that the required ground truth for training stronger mixed models (for segmentation, as well as text recognition) is not available, yet, neither in the desired quantity nor quality. To deal with this issue in the short run, OCR4all offers a comfortable GUI that allows error corrections not only in the final output, but already in early stages to minimize error propagations. In the long run, this constant manual correction produces large quantities of valuable, high quality training material, which can be used to improve fully automatic approaches. Further on, extensive configuration capabilities are provided to set the degree of automation of the workflow and to make adaptations to the carefully selected default parameters for specific printings, if necessary. During experiments, the fully automated application on 19th Century novels showed that OCR4all can considerably outperform the commercial state-of-the-art tool ABBYY Finereader on moderate layouts if suitably pretrained mixed OCR models are available. Furthermore, on very complex early printed books, even users with minimal or no experience were able to capture the text with manageable effort and great quality, achieving excellent Character Error Rates (CERs) below 0.5%. The architecture of OCR4all allows the easy integration (or substitution) of newly developed tools for its main components by standardized interfaces like PageXML, thus aiming at continual higher automation for historical printings.

Abstract

Optical Character Recognition (OCR) on historical printings is a challenging task mainly due to the complexity of the layout and the highly variant typography. Nevertheless, in the last few years, great progress has been made in the area of historical OCR, resulting in several powerful open-source tools for preprocessing, layout analysis and segmentation, character recognition, and post-processing. The drawback of these tools often is their limited applicability by non-technical users like humanist scholars and in particular the combined use of several tools in a workflow. In this paper, we present an open-source OCR software called OCR4all, which combines state-of-the-art OCR components and continuous model training into a comprehensive workflow. While a variety of materials can already be processed fully automatically, books with more complex layouts require manual intervention by the users. This is mostly due to the fact that the required ground truth for training stronger mixed models (for segmentation, as well as text recognition) is not available, yet, neither in the desired quantity nor quality. To deal with this issue in the short run, OCR4all offers a comfortable GUI that allows error corrections not only in the final output, but already in early stages to minimize error propagations. In the long run, this constant manual correction produces large quantities of valuable, high quality training material, which can be used to improve fully automatic approaches. Further on, extensive configuration capabilities are provided to set the degree of automation of the workflow and to make adaptations to the carefully selected default parameters for specific printings, if necessary. During experiments, the fully automated application on 19th Century novels showed that OCR4all can considerably outperform the commercial state-of-the-art tool ABBYY Finereader on moderate layouts if suitably pretrained mixed OCR models are available. Furthermore, on very complex early printed books, even users with minimal or no experience were able to capture the text with manageable effort and great quality, achieving excellent Character Error Rates (CERs) below 0.5%. The architecture of OCR4all allows the easy integration (or substitution) of newly developed tools for its main components by standardized interfaces like PageXML, thus aiming at continual higher automation for historical printings.

Statistics

Citations

Dimensions.ai Metrics

Altmetrics

Downloads

10 downloads since deposited on 30 Jan 2020
10 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:06 Faculty of Arts > Institute of Art History
Dewey Decimal Classification:700 Arts
Scopus Subject Areas:Physical Sciences > General Materials Science
Physical Sciences > Instrumentation
Physical Sciences > General Engineering
Physical Sciences > Process Chemistry and Technology
Physical Sciences > Computer Science Applications
Physical Sciences > Fluid Flow and Transfer Processes
Language:English
Date:13 November 2019
Deposited On:30 Jan 2020 09:06
Last Modified:29 Jul 2020 13:51
Publisher:MDPI Publishing
Number of Pages:30
ISSN:2076-3417
OA Status:Gold
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.3390/app9224853
Official URL:https://www.mdpi.com/2076-3417/9/22/4853/htm

Download

Gold Open Access

Download PDF  'OCR4all - an open-source tool providing a (semi-)automatic OCR workflow for historical printings'.
Preview
Content: Published Version
Language: English
Filetype: PDF
Size: 9MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)