Header

UZH-Logo

Maintenance Infos

RAMP1 and RAMP3 differentially control amylin's effects on food intake, glucose and energy balance in male and female mice


Coester, Bernd; Pence, Sydney W; Arrigoni, Soraya; Boyle, Christina N; Le Foll, Christelle; Lutz, Thomas A (2019). RAMP1 and RAMP3 differentially control amylin's effects on food intake, glucose and energy balance in male and female mice. Neuroscience:Epub ahead of print-xx.

Abstract

Amylin is a pancreatic peptide, which acts as a key controller of food intake and energy balance and predominately binds to three receptors (AMY 1-3). AMY 1-3 are composed of a calcitonin core receptor (CTR) and associated receptor-activity modifying proteins (RAMPs) 1-3. Using RAMP1, RAMP3 and RAMP1/3 global KO mice, this study aimed to determine whether the absence of one or two RAMP subunits affects food intake, glucose homeostasis and metabolism. Of all the RAMP-deficient mice, only high-fat diet fed RAMP1/3 KO mice had increased body weight. Chow-fed RAMP3 KO and high-fat diet fed 1/3 KO male mice were glucose intolerant. Fat depots were increased in RAMP1 KO male mice. No difference in energy expenditure was observed but the respiratory exchange ratio (RER) was elevated in RAMP1/3 KO. RAMP1 and 1/3 KO male mice displayed an increase in intermeal interval (IMI) and meal duration, whereas IMI was decreased in RAMP3 KO male and female mice. WT and RAMP1, RAMP3, and RAMP1/3 KO male and female littermates were then assessed for their food intake response to an acute intraperitoneal injection of amylin or its receptor agonist, salmon calcitonin (sCT). RAMP1/3 KO were insensitive to both, while RAMP3 KO were responsive to sCT only and RAMP1 KO to amylin only. While female mice generally weighed less than male mice, only RAMP1 KO showed a clear sex difference in meal pattern and food intake tests. Lastly, a decrease in CTR fibers did not consistently correlate with a decrease in amylin- induced c-Fos expression in the area postrema (AP). Ultimately, the results from this study provide evidence for a role of RAMP1 in mediation of fat utilization and a role for RAMP3 in glucose homeostasis and amylin's anorectic effect.

Abstract

Amylin is a pancreatic peptide, which acts as a key controller of food intake and energy balance and predominately binds to three receptors (AMY 1-3). AMY 1-3 are composed of a calcitonin core receptor (CTR) and associated receptor-activity modifying proteins (RAMPs) 1-3. Using RAMP1, RAMP3 and RAMP1/3 global KO mice, this study aimed to determine whether the absence of one or two RAMP subunits affects food intake, glucose homeostasis and metabolism. Of all the RAMP-deficient mice, only high-fat diet fed RAMP1/3 KO mice had increased body weight. Chow-fed RAMP3 KO and high-fat diet fed 1/3 KO male mice were glucose intolerant. Fat depots were increased in RAMP1 KO male mice. No difference in energy expenditure was observed but the respiratory exchange ratio (RER) was elevated in RAMP1/3 KO. RAMP1 and 1/3 KO male mice displayed an increase in intermeal interval (IMI) and meal duration, whereas IMI was decreased in RAMP3 KO male and female mice. WT and RAMP1, RAMP3, and RAMP1/3 KO male and female littermates were then assessed for their food intake response to an acute intraperitoneal injection of amylin or its receptor agonist, salmon calcitonin (sCT). RAMP1/3 KO were insensitive to both, while RAMP3 KO were responsive to sCT only and RAMP1 KO to amylin only. While female mice generally weighed less than male mice, only RAMP1 KO showed a clear sex difference in meal pattern and food intake tests. Lastly, a decrease in CTR fibers did not consistently correlate with a decrease in amylin- induced c-Fos expression in the area postrema (AP). Ultimately, the results from this study provide evidence for a role of RAMP1 in mediation of fat utilization and a role for RAMP3 in glucose homeostasis and amylin's anorectic effect.

Statistics

Citations

Dimensions.ai Metrics

Altmetrics

Downloads

0 downloads since deposited on 14 Feb 2020
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Institute of Veterinary Physiology
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:24 December 2019
Deposited On:14 Feb 2020 15:24
Last Modified:14 Feb 2020 15:25
Publisher:Elsevier
ISSN:0306-4522
OA Status:Closed
Publisher DOI:https://doi.org/10.1016/j.neuroscience.2019.11.036
PubMed ID:31881259
Project Information:
  • : FunderSNFSF
  • : Grant ID31003A-156935
  • : Project Title

Download

Closed Access: Download allowed only for UZH members