Header

UZH-Logo

Maintenance Infos

Challenges of collecting blow from small cetaceans


Raudino, Holly C; Tyne, Julian A; Smith, Alastair; Ottewell, Kym; McArthur, Shelley; Kopps, Anna M; Chabanne, Delphine; Harcourt, Robert G; Pirotta, Vanessa; Waples, Kelly (2019). Challenges of collecting blow from small cetaceans. Ecosphere, 10(10):e02901.

Abstract

We trialed the collection of blow samples using a waterproof electric multirotor (quadcopter) drone from two free‐ranging dolphin species, the abundant and approachable bottlenose dolphin (Tursiops aduncus) and the less common and boat shy humpback dolphin (Sousa sahulensis). This drone was fast, maneuverable, and quiet compared to other drones commonly used in studies of cetaceans and relative to their hearing thresholds. We were successful in collecting blow samples from four individual dolphins (three bottlenose dolphins and one humpback dolphin) in two groups. The success of obtaining samples was dependent on the individual dolphin's activity. We were successful in sampling when dolphins were resting and socializing but found that socializing dolphins were not predictable in their surfacing and direction and therefore do not recommend drone sampling socializing dolphins. The suitability and preference of the sampling technique over biopsy sampling is highly dependent on the dolphin activity. We also attempted to extract DNA from the blow samples with the aim of assessing the feasibility of using blow sampling by drone for population genetic studies. We were unsuccessful in extracting DNA and recommend that others attempting to sample dolphin blow with a drone should prioritize collecting a larger volume of blow that may yield adequate concentrations of DNA to be amplified. Blow sample volume could potentially be increased by sampling with more absorbent materials.

Abstract

We trialed the collection of blow samples using a waterproof electric multirotor (quadcopter) drone from two free‐ranging dolphin species, the abundant and approachable bottlenose dolphin (Tursiops aduncus) and the less common and boat shy humpback dolphin (Sousa sahulensis). This drone was fast, maneuverable, and quiet compared to other drones commonly used in studies of cetaceans and relative to their hearing thresholds. We were successful in collecting blow samples from four individual dolphins (three bottlenose dolphins and one humpback dolphin) in two groups. The success of obtaining samples was dependent on the individual dolphin's activity. We were successful in sampling when dolphins were resting and socializing but found that socializing dolphins were not predictable in their surfacing and direction and therefore do not recommend drone sampling socializing dolphins. The suitability and preference of the sampling technique over biopsy sampling is highly dependent on the dolphin activity. We also attempted to extract DNA from the blow samples with the aim of assessing the feasibility of using blow sampling by drone for population genetic studies. We were unsuccessful in extracting DNA and recommend that others attempting to sample dolphin blow with a drone should prioritize collecting a larger volume of blow that may yield adequate concentrations of DNA to be amplified. Blow sample volume could potentially be increased by sampling with more absorbent materials.

Statistics

Citations

Altmetrics

Downloads

6 downloads since deposited on 13 Feb 2020
6 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Anthropology
Dewey Decimal Classification:300 Social sciences, sociology & anthropology
Language:English
Date:1 October 2019
Deposited On:13 Feb 2020 15:48
Last Modified:05 Mar 2020 16:29
Publisher:Ecological Society of America
ISSN:2150-8925
OA Status:Gold
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1002/ecs2.2901

Download

Gold Open Access

Download PDF  'Challenges of collecting blow from small cetaceans'.
Preview
Content: Published Version
Filetype: PDF
Size: 743kB
View at publisher
Licence: Creative Commons: Attribution 3.0 Unported (CC BY 3.0)