Header

UZH-Logo

Maintenance Infos

Report from Working Group 3: Beyond the Standard Model physics at the HL-LHC and HE-LHC Physics of the HL-LHC, and Perspectives at the HE-LHC


Baker, Michael J; Ježo, Tomáš; Matorras Cuevas, P; Takahashi, Yuta (2019). Report from Working Group 3: Beyond the Standard Model physics at the HL-LHC and HE-LHC Physics of the HL-LHC, and Perspectives at the HE-LHC. In: Vidal, X Cid. CERN Yellow Reports: Monographs. Geneva: CERN, 588-865.

Abstract

This is the third out of five chapters of the final report [1] of the Workshop on Physics at HL-LHC, and perspectives on HE-LHC [2]. It is devoted to the study of the potential, in the search for Beyond the Standard Model (BSM) physics, of the High Luminosity (HL) phase of the LHC, defined as $3$ ab$^{-1}$ of data taken at a centre-of-mass energy of 14 TeV, and of a possible future upgrade, the High Energy (HE) LHC, defined as $15$ ab$^{-1}$ of data at a centre-of-mass energy of 27 TeV. We consider a large variety of new physics models, both in a simplified model fashion and in a more model-dependent one. A long list of contributions from the theory and experimental (ATLAS, CMS, LHCb) communities have been collected and merged together to give a complete, wide, and consistent view of future prospects for BSM physics at the considered colliders. On top of the usual standard candles, such as supersymmetric simplified models and resonances, considered for the evaluation of future collider potentials, this report contains results on dark matter and dark sectors, long lived particles, leptoquarks, sterile neutrinos, axion-like particles, heavy scalars, vector-like quarks, and more. Particular attention is placed, especially in the study of the HL-LHC prospects, to the detector upgrades, the assessment of the future systematic uncertainties, and new experimental techniques. The general conclusion is that the HL-LHC, on top of allowing to extend the present LHC mass and coupling reach by $20-50\%$ on most new physics scenarios, will also be able to constrain, and potentially discover, new physics that is presently unconstrained. Moreover, compared to the HL-LHC, the reach in most observables will, generally more than double at the HE-LHC, which may represent a good candidate future facility for a final test of TeV-scale new physics.

Abstract

This is the third out of five chapters of the final report [1] of the Workshop on Physics at HL-LHC, and perspectives on HE-LHC [2]. It is devoted to the study of the potential, in the search for Beyond the Standard Model (BSM) physics, of the High Luminosity (HL) phase of the LHC, defined as $3$ ab$^{-1}$ of data taken at a centre-of-mass energy of 14 TeV, and of a possible future upgrade, the High Energy (HE) LHC, defined as $15$ ab$^{-1}$ of data at a centre-of-mass energy of 27 TeV. We consider a large variety of new physics models, both in a simplified model fashion and in a more model-dependent one. A long list of contributions from the theory and experimental (ATLAS, CMS, LHCb) communities have been collected and merged together to give a complete, wide, and consistent view of future prospects for BSM physics at the considered colliders. On top of the usual standard candles, such as supersymmetric simplified models and resonances, considered for the evaluation of future collider potentials, this report contains results on dark matter and dark sectors, long lived particles, leptoquarks, sterile neutrinos, axion-like particles, heavy scalars, vector-like quarks, and more. Particular attention is placed, especially in the study of the HL-LHC prospects, to the detector upgrades, the assessment of the future systematic uncertainties, and new experimental techniques. The general conclusion is that the HL-LHC, on top of allowing to extend the present LHC mass and coupling reach by $20-50\%$ on most new physics scenarios, will also be able to constrain, and potentially discover, new physics that is presently unconstrained. Moreover, compared to the HL-LHC, the reach in most observables will, generally more than double at the HE-LHC, which may represent a good candidate future facility for a final test of TeV-scale new physics.

Statistics

Citations

Dimensions.ai Metrics

Altmetrics

Downloads

9 downloads since deposited on 13 Feb 2020
2 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Book Section, not_refereed, further contribution
Communities & Collections:07 Faculty of Science > Physics Institute
Dewey Decimal Classification:530 Physics
Language:English
Date:2019
Deposited On:13 Feb 2020 10:37
Last Modified:14 Feb 2020 01:27
Publisher:CERN
OA Status:Green
Publisher DOI:https://doi.org/10.23731/CYRM-2019-007.585
Official URL:https://e-publishing.cern.ch/index.php/CYRM/article/view/953
  • Content: Published Version
  • Licence: Creative Commons: Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)