Header

UZH-Logo

Maintenance Infos

Tidal disruption event rates in galaxy merger remnants


Pfister, Hugo; Bar-Or, Ben; Volonteri, Marta; Dubois, Yohan; Capelo, Pedro R (2019). Tidal disruption event rates in galaxy merger remnants. Monthly Notices of the Royal Astronomical Society. Letters, 488(1):L29-L34.

Abstract

The rate of tidal disruption events (TDEs) depends sensitively on the stellar properties of the central galactic regions. Simulations show that galaxy mergers cause gas inflows, triggering nuclear starbursts, increasing the central stellar density. Motivated by these numerical results, and by the observed overrepresentation of post-starburst galaxies among TDE hosts, we study the evolution of the TDE rate in high-resolution hydrodynamical simulations of a galaxy merger, in which we capture the evolution of the stellar density around the massive black holes (BHs). We apply analytical estimates of the loss-cone theory, using the stellar density profiles from simulations, to estimate the time evolution of the TDE rate. At the second pericentre, a nuclear starburst enhances the stellar density around the BH in the least massive galaxy, leading to an enhancement of the TDE rate around the secondary BH, although the magnitude and the duration of the increase depend on the stochasticity of star formation on very small scales. The central stellar density around the primary BH remains instead fairly constant, and so is its TDE rate. After the formation of the binary, the stellar density decreases, and so does the TDE rate.

Abstract

The rate of tidal disruption events (TDEs) depends sensitively on the stellar properties of the central galactic regions. Simulations show that galaxy mergers cause gas inflows, triggering nuclear starbursts, increasing the central stellar density. Motivated by these numerical results, and by the observed overrepresentation of post-starburst galaxies among TDE hosts, we study the evolution of the TDE rate in high-resolution hydrodynamical simulations of a galaxy merger, in which we capture the evolution of the stellar density around the massive black holes (BHs). We apply analytical estimates of the loss-cone theory, using the stellar density profiles from simulations, to estimate the time evolution of the TDE rate. At the second pericentre, a nuclear starburst enhances the stellar density around the BH in the least massive galaxy, leading to an enhancement of the TDE rate around the secondary BH, although the magnitude and the duration of the increase depend on the stochasticity of star formation on very small scales. The central stellar density around the primary BH remains instead fairly constant, and so is its TDE rate. After the formation of the binary, the stellar density decreases, and so does the TDE rate.

Statistics

Citations

Dimensions.ai Metrics
1 citation in Web of Science®
5 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

5 downloads since deposited on 14 Feb 2020
5 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute for Computational Science
Dewey Decimal Classification:530 Physics
Scopus Subject Areas:Physical Sciences > Astronomy and Astrophysics
Physical Sciences > Space and Planetary Science
Language:English
Date:5 June 2019
Deposited On:14 Feb 2020 11:58
Last Modified:29 Jul 2020 14:27
Publisher:Oxford University Press
ISSN:1745-3933
OA Status:Green
Publisher DOI:https://doi.org/10.1093/mnrasl/slz091

Download

Green Open Access

Download PDF  'Tidal disruption event rates in galaxy merger remnants'.
Preview
Content: Published Version
Filetype: PDF
Size: 922kB
View at publisher