Header

UZH-Logo

Maintenance Infos

Development of a new High Resolution Melting (HRM) assay for identification and differentiation of Mycobacterium tuberculosis complex samples


Landolt, Patricia; Stephan, Roger; Scherrer, Simone (2019). Development of a new High Resolution Melting (HRM) assay for identification and differentiation of Mycobacterium tuberculosis complex samples. Scientific Reports, 9(1):1850.

Abstract

The rapid identification and differentiation of members of the Mycobacterium tuberculosis complex (MTBC) is essential to assess the potential zoonotic risk. Different available molecular methods are time consuming since they depend on cultivation of mycobacteria. High Resolution Melting (HRM) is a low cost, rapid and easy to perform single-tube method not limited to cultured samples. In this study, a HRM assay specifically targeting gyrB was developed to simultaneously identify and differentiate Mycobacterium (M.) tuberculosis, M. microti and M. bovis/M. caprae. To evaluate the performance of this assay, 38 MTBC isolates and 25 directly extracted clinical specimens were analysed. HRM results of all 38 (100%) examined isolates correlated with the results obtained with the commercially available GenoType MTBC test (Hain Lifescience). From the 25 clinical specimens tested, species identification by HRM showed concordant results with the previously used identification methods in 23 samples (92%). The assay demonstrated a good analytical sensitivity, specificity and reproducibility and can be used directly on clinical specimens.

Abstract

The rapid identification and differentiation of members of the Mycobacterium tuberculosis complex (MTBC) is essential to assess the potential zoonotic risk. Different available molecular methods are time consuming since they depend on cultivation of mycobacteria. High Resolution Melting (HRM) is a low cost, rapid and easy to perform single-tube method not limited to cultured samples. In this study, a HRM assay specifically targeting gyrB was developed to simultaneously identify and differentiate Mycobacterium (M.) tuberculosis, M. microti and M. bovis/M. caprae. To evaluate the performance of this assay, 38 MTBC isolates and 25 directly extracted clinical specimens were analysed. HRM results of all 38 (100%) examined isolates correlated with the results obtained with the commercially available GenoType MTBC test (Hain Lifescience). From the 25 clinical specimens tested, species identification by HRM showed concordant results with the previously used identification methods in 23 samples (92%). The assay demonstrated a good analytical sensitivity, specificity and reproducibility and can be used directly on clinical specimens.

Statistics

Citations

Dimensions.ai Metrics
16 citations in Web of Science®
19 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

36 downloads since deposited on 14 Feb 2020
4 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Institute of Food Safety and Hygiene
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Scopus Subject Areas:Health Sciences > Multidisciplinary
Uncontrolled Keywords:Multidisciplinary
Language:English
Date:1 December 2019
Deposited On:14 Feb 2020 15:58
Last Modified:24 Sep 2023 01:37
Publisher:Nature Publishing Group
ISSN:2045-2322
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1038/s41598-018-38243-6
PubMed ID:30755639
  • Content: Published Version
  • Language: English
  • Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)