Header

UZH-Logo

Maintenance Infos

On the limitations of partial Fourier acquisition in phase-contrast MRI of turbulent kinetic energy


Walheim, Jonas; Gotschy, Alexander; Kozerke, Sebastian (2019). On the limitations of partial Fourier acquisition in phase-contrast MRI of turbulent kinetic energy. Magnetic Resonance in Medicine, 81(1):514-523.

Abstract

PURPOSE To investigate limitations of partial Fourier acquisition in phase-contrast MRI of turbulent kinetic energy (TKE).

METHODS

To assess the validity of partial Fourier reconstruction of TKE and phase images, computational fluid dynamics data of mean and turbulent velocities in a stenotic U-bend phantom was used. Partial Fourier acquisition with 75% k-space coverage was simulated and TKE data were reconstructed using zero-filling, homodyne reconstruction, and the method of projections onto convex sets (POCS). Results were compared to data from fully sampled k-space and 75% symmetric sampling. In addition, compressed sensing (CS) reconstruction was compared for a standard variable density sampling pattern and a variable density sampling pattern combined with 75% partial Fourier. For illustration purposes, in vivo examples of velocity magnitude and TKE maps of aortic flow reconstructed with the different methods are provided.

RESULTS

In accordance with theory, partial Fourier reconstruction of TKE maps from phase-contrast data results in artifacts relative to fully sampled data. It is demonstrated that neither homodyne reconstruction nor POCS can improve reconstruction of TKE data with respect to zero-filling reconstruction when compared to ground-truth (RMS error: 4.70%, 4.34%, and 2.45% for homodyne, POCS, and zero-filling reconstruction of in vivo data, respectively). CS reconstruction from data acquired with partial Fourier did not recover the resolution loss incurred by partial Fourier sampling.

CONCLUSION

Partial Fourier reconstruction of TKE maps from phase-contrast data does not yield a benefit over zero-filling reconstruction. In consequence, symmetric sampling is preferred over partial Fourier acquisition for a given number of phase-encodes in phase-contrast MRI.

Abstract

PURPOSE To investigate limitations of partial Fourier acquisition in phase-contrast MRI of turbulent kinetic energy (TKE).

METHODS

To assess the validity of partial Fourier reconstruction of TKE and phase images, computational fluid dynamics data of mean and turbulent velocities in a stenotic U-bend phantom was used. Partial Fourier acquisition with 75% k-space coverage was simulated and TKE data were reconstructed using zero-filling, homodyne reconstruction, and the method of projections onto convex sets (POCS). Results were compared to data from fully sampled k-space and 75% symmetric sampling. In addition, compressed sensing (CS) reconstruction was compared for a standard variable density sampling pattern and a variable density sampling pattern combined with 75% partial Fourier. For illustration purposes, in vivo examples of velocity magnitude and TKE maps of aortic flow reconstructed with the different methods are provided.

RESULTS

In accordance with theory, partial Fourier reconstruction of TKE maps from phase-contrast data results in artifacts relative to fully sampled data. It is demonstrated that neither homodyne reconstruction nor POCS can improve reconstruction of TKE data with respect to zero-filling reconstruction when compared to ground-truth (RMS error: 4.70%, 4.34%, and 2.45% for homodyne, POCS, and zero-filling reconstruction of in vivo data, respectively). CS reconstruction from data acquired with partial Fourier did not recover the resolution loss incurred by partial Fourier sampling.

CONCLUSION

Partial Fourier reconstruction of TKE maps from phase-contrast data does not yield a benefit over zero-filling reconstruction. In consequence, symmetric sampling is preferred over partial Fourier acquisition for a given number of phase-encodes in phase-contrast MRI.

Statistics

Citations

Dimensions.ai Metrics

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Cardiology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:January 2019
Deposited On:20 Feb 2020 10:12
Last Modified:20 Feb 2020 10:13
Publisher:Wiley-Blackwell Publishing, Inc.
ISSN:0740-3194
OA Status:Closed
Publisher DOI:https://doi.org/10.1002/mrm.27397
PubMed ID:30265753

Download

Full text not available from this repository.
View at publisher

Get full-text in a library