Header

UZH-Logo

Maintenance Infos

Upper limits on very-high-energy gamma-ray emission from core-collapse supernovae observed with H.E.S.S.


Mitchell, A M W; et al (2019). Upper limits on very-high-energy gamma-ray emission from core-collapse supernovae observed with H.E.S.S. Astronomy and Astrophysics, 626:A57.

Abstract

Young core-collapse supernovae with dense-wind progenitors may be able to accelerate cosmic-ray hadrons beyond the knee of the cosmic-ray spectrum, and this may result in measurable gamma-ray emission. We searched for gamma-ray emission from ten supernovae observed with the High Energy Stereoscopic System (H.E.S.S.) within a year of the supernova event. Nine supernovae were observed serendipitously in the H.E.S.S. data collected between December 2003 and December 2014, with exposure times ranging from 1.4 to 53 h. In addition we observed SN 2016adj as a target of opportunity in February 2016 for 13 h. No significant gamma-ray emission has been detected for any of the objects, and upper limits on the >1 TeV gamma-ray flux of the order of ~10−13 cm−2s−1 are established, corresponding to upper limits on the luminosities in the range ~2 × 1039 to ~1 × 1042 erg s−1. These values are used to place model-dependent constraints on the mass-loss rates of the progenitor stars, implying upper limits between ~2 × 10−5 and ~2 × 10−3 M⊙ yr−1 under reasonable assumptions on the particle acceleration parameters.

Abstract

Young core-collapse supernovae with dense-wind progenitors may be able to accelerate cosmic-ray hadrons beyond the knee of the cosmic-ray spectrum, and this may result in measurable gamma-ray emission. We searched for gamma-ray emission from ten supernovae observed with the High Energy Stereoscopic System (H.E.S.S.) within a year of the supernova event. Nine supernovae were observed serendipitously in the H.E.S.S. data collected between December 2003 and December 2014, with exposure times ranging from 1.4 to 53 h. In addition we observed SN 2016adj as a target of opportunity in February 2016 for 13 h. No significant gamma-ray emission has been detected for any of the objects, and upper limits on the >1 TeV gamma-ray flux of the order of ~10−13 cm−2s−1 are established, corresponding to upper limits on the luminosities in the range ~2 × 1039 to ~1 × 1042 erg s−1. These values are used to place model-dependent constraints on the mass-loss rates of the progenitor stars, implying upper limits between ~2 × 10−5 and ~2 × 10−3 M⊙ yr−1 under reasonable assumptions on the particle acceleration parameters.

Statistics

Citations

Dimensions.ai Metrics

Altmetrics

Downloads

4 downloads since deposited on 25 Feb 2020
4 downloads since 12 months
Detailed statistics

Additional indexing

Contributors:H.E.S.S. Collaboration
Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Physics Institute
Dewey Decimal Classification:530 Physics
Scopus Subject Areas:Physical Sciences > Astronomy and Astrophysics
Physical Sciences > Space and Planetary Science
Uncontrolled Keywords:Space and Planetary Science, Astronomy and Astrophysics
Language:English
Date:1 June 2019
Deposited On:25 Feb 2020 08:37
Last Modified:04 Sep 2020 03:39
Publisher:EDP Sciences
ISSN:0004-6361
OA Status:Hybrid
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1051/0004-6361/201935242

Download

Hybrid Open Access

Download PDF  'Upper limits on very-high-energy gamma-ray emission from core-collapse supernovae observed with H.E.S.S.'.
Preview
Content: Published Version
Filetype: PDF
Size: 918kB
View at publisher