Abstract
A terrestrial laser scanner (TLS) was used to measure
canopy directional gap fraction distribution in forest stands in the Swiss National Park, eastern Switzerland. A scanner model was derived to determine the expected number of laser shots in all directions, and these data were compared with the measured number of laser hits to determine directional gap fraction at eight sampling points. Directional gap fraction distributions were
determined from digital hemispherical photographs recorded at the same sampling locations in the forest, and these data were compared with distributions computed from the laser scanner data.
The results showed that the measured directional gap fraction distributions were similar for both hemispherical photography and TLS data with a high degree of precision in the area of overlap of orthogonal laser scans. Analysis of hemispherical photography to determine canopy gap fraction normally requires some manual data processing; laser scanners offer semiautomatic measurement of directional gap fraction distribution plus additional threedimensional
information about tree height, gap size, and foliage
distributions.