Header

UZH-Logo

Maintenance Infos

Photoreceptor degeneration accompanies vascular changes in a Zebrafish model of diabetic retinopathy


Ali, Zaheer; Zang, Jingjing; Lagali, Neil; Schmitner, Nicole; Salvenmoser, Willi; Mukwaya, Anthony; Neuhauss, Stephan C F; Jensen, Lasse D; Kimmel, Robin A (2020). Photoreceptor degeneration accompanies vascular changes in a Zebrafish model of diabetic retinopathy. Investigative Ophthalmology & Visual Science [IOVS], 61(2):43.

Abstract

Purpose: Diabetic retinopathy (DR) is a leading cause of vision impairment and blindness worldwide in the working-age population, and the incidence is rising. Until now it has been difficult to define initiating events and disease progression at the molecular level, as available diabetic rodent models do not present the full spectrum of neural and vascular pathologies. Zebrafish harboring a homozygous mutation in the pancreatic transcription factor pdx1 were previously shown to display a diabetic phenotype from larval stages through adulthood. In this study, pdx1 mutants were examined for retinal vascular and neuronal pathology to demonstrate suitability of these fish for modeling DR.
Methods: Vessel morphology was examined in pdx1 mutant and control fish expressing the fli1a:EGFP transgene. We further characterized vascular and retinal phenotypes in mutants and controls using immunohistochemistry, histology, and electron microscopy. Retinal function was assessed using electroretinography.
Results: Pdx1 mutants exhibit clear vascular phenotypes at 2 months of age, and disease progression, including arterial vasculopenia, capillary tortuosity, and hypersprouting, could be detected at stages extending over more than 1 year. Neural-retinal pathologies are consistent with photoreceptor dysfunction and loss, but do not progress to blindness.
Conclusions: This study highlights pdx1 mutant zebrafish as a valuable complement to rodent and other mammalian models of DR, in particular for research into the mechanistic interplay of diabetes with vascular and neuroretinal disease. They are furthermore suited for molecular studies to identify new targets for treatment of early as well as late DR.

Abstract

Purpose: Diabetic retinopathy (DR) is a leading cause of vision impairment and blindness worldwide in the working-age population, and the incidence is rising. Until now it has been difficult to define initiating events and disease progression at the molecular level, as available diabetic rodent models do not present the full spectrum of neural and vascular pathologies. Zebrafish harboring a homozygous mutation in the pancreatic transcription factor pdx1 were previously shown to display a diabetic phenotype from larval stages through adulthood. In this study, pdx1 mutants were examined for retinal vascular and neuronal pathology to demonstrate suitability of these fish for modeling DR.
Methods: Vessel morphology was examined in pdx1 mutant and control fish expressing the fli1a:EGFP transgene. We further characterized vascular and retinal phenotypes in mutants and controls using immunohistochemistry, histology, and electron microscopy. Retinal function was assessed using electroretinography.
Results: Pdx1 mutants exhibit clear vascular phenotypes at 2 months of age, and disease progression, including arterial vasculopenia, capillary tortuosity, and hypersprouting, could be detected at stages extending over more than 1 year. Neural-retinal pathologies are consistent with photoreceptor dysfunction and loss, but do not progress to blindness.
Conclusions: This study highlights pdx1 mutant zebrafish as a valuable complement to rodent and other mammalian models of DR, in particular for research into the mechanistic interplay of diabetes with vascular and neuroretinal disease. They are furthermore suited for molecular studies to identify new targets for treatment of early as well as late DR.

Statistics

Citations

Altmetrics

Downloads

15 downloads since deposited on 05 Mar 2020
15 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Molecular Life Sciences
Dewey Decimal Classification:570 Life sciences; biology
Scopus Subject Areas:Health Sciences > Ophthalmology
Life Sciences > Sensory Systems
Life Sciences > Cellular and Molecular Neuroscience
Language:English
Date:27 February 2020
Deposited On:05 Mar 2020 15:05
Last Modified:01 Aug 2020 18:38
Publisher:Association for Research in Vision and Ophthalmology
ISSN:0146-0404
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1167/iovs.61.2.43
PubMed ID:32106290

Download

Gold Open Access

Download PDF  'Photoreceptor degeneration accompanies vascular changes in a Zebrafish model of diabetic retinopathy'.
Preview
Content: Published Version
Language: English
Filetype: PDF
Size: 3MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)