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The sensitizing effect of capsaicin has been previously characterized using laser and
contact heat evoked potentials (LEPs and CHEPs) by stimulating in the primary area
of hyperalgesia. Interestingly, only CHEPs reveal changes consistent with notion of
peripheral sensitization (i.e., reduced latencies). The aim of this study was to investigate
contact heat stimulation parameters necessary to detect peripheral sensitization related
to the topical application of capsaicin, and therefore signi�cantly improve the current
method of measuring peripheral sensitization via CHEPs. Rapid contact heat stimulation
(70� C/s) was applied from three different baseline temperatures (35, 38.5, and 42� C) to a
52� C peak temperature, before and after the topical application of capsaicin on the hand
dorsum. Increased pain ratings in the primary area of hyperalgesia were accompanied
by reduced N2 latency. Changes in N2 latency were, however, only signi�cant following
stimulation from 35 and 38.5� C baseline temperatures. These �ndings suggest that
earlier recruitment of capsaicin-sensitized afferents occurs between 35 and 42� C,
as stimulations from 42� C baseline were unchanged by capsaicin. This is in line
with reduced thresholds of type II A-delta mechanoheat (AMH) nociceptors following
sensitization. Conventional CHEP stimulation, with a baseline temperature below 42� C,
is well suited to objectively detect evidence of peripheral sensitization.

Keywords: capsaicin, contact heat evoked potentials, type II A mechanoheat nociceptors, EEG, hyperalgesia

INTRODUCTION

Approximately one in �ve individuals live with chronic pain (Schop�ocher et al., 2011; Kuehn,
2018), with a combined economic impact greater than cancer, HIV, and heart disease combined
(Phillips, 2009). The sensitization of nociceptive neurons in the periphery is often a key �rst step
in the development of persistent and chronic pain (Latremoliere and Woolf, 2009). The study of

Abbreviations: AMH, A-delta mechanoheat nociceptors; CHEPs, contact heat evoked potentials; LEPs, laser evoked heat
potentials; TRPV-1, transient receptor potential cation channel subfamily V member 1.
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chronic pain, and the development of sensitization, has long
relied on the experimental induction of pain via controlled
noxious stimuli, such as capsaicin (Basbaum et al., 2009;
Latremoliere and Woolf, 2009; Woolf, 2011). The topical
application of capsaicin results in a predictable area of primary
hyperalgesia (LaMotte et al., 1991; Kilo et al., 1994), a key
indicator of peripheral sensitization. The sensitizing e�ect of
capsaicin is readily detected in humans as reduced heat pain
thresholds and increased sensitivity to mechanical stimuli.
Based on its robust, reversible, and minimally-invasive nature,
capsaicin represents a widely popular, translational pain model
to investigate analgesic drug properties and neuromodulatory
e�ects (Kazarinov et al., 1977; Poyhia and Vainio, 2006; Jutzeler
et al., 2015; Larsen et al., 2018; Vollert et al., 2018).

The underlying mechanisms of capsaicin induced primary
hyperalgesia are attributable to sensitization of transient receptor
potential cation channel subfamily V member 1 (TRPV-1)
(Rosenbaum and Simon, 2007). Speci�c �ber types sensitized
by capsaicin include type II AMH nociceptors (Ringkamp
et al., 2001; Dubin and Patapoutian, 2010). These a�erents
are responsible for conveying “�rst pain,” typically recruited
following thermal stimulation at or above 42� C (Treede et al.,
1995, 1998; Harkins et al., 2000; Arendt-Nielsen and Chen, 2003),
and commonly investigated in humans using contact heat and
laser evoked potentials (CHEPs and LEPs) (Harkins et al., 2000;
Chen et al., 2001; Iannetti et al., 2006).

In line with behavioral signs of sensitization, CHEPs are
modulated following application of capsaicin and stimulation
in the primary area of hyperalgesia. This is evidenced as
increased pain ratings and reductions in N2 waveform latency
(Madsen et al., 2012; Jutzeler et al., 2015). However, an
understanding of latency reductions and neural processes
involved remains unknown.

One possibility for N2 latency reductions in response
to capsaicin is that type II AMH a�erents are temporally
recruited earlier in the periphery during contact heat stimulation.
Conventionally, contact heat stimulation is delivered from a low
(e.g., 35� C) baseline to a peak temperature (e.g., 52� C) at a
�xed, nominal rate (e.g., 70� C/s) (Kramer et al., 2012a,b, 2013,
2016; Haefeli et al., 2013, 2014b). This means that stimulation
passes through lower temperatures before activating type II
AMH nociceptors (at�� 42� C) (Baumgartner et al., 2005). After
the topical application of capsaicin, type II AMH nociceptor
threshold is reduced (e.g., to 38–40� C), which results in earlier
onset CHEPs (i.e., reduced latency).

To test this theory, we examined CHEPs in the primary area of
hyperalgesia using three di�erent baseline temperatures (i.e., 35,
38.5, and 42� C). Elevated baseline temperatures were intended
to decrease recruitment of a�erents by contact heat stimulation
below the normal threshold of type II AMH nociceptors (� 42–
46� C) (Treede et al., 1995, 1998; Harkins et al., 2000; Arendt-
Nielsen and Chen, 2003). We hypothesized that applying baseline
temperatures of 38.5 and 42� C would attenuate reductions
in N2 latency compared to 35� C baseline stimulation. Our
�ndings will improve the understanding of neuromodulatory
in�uences of CHEPs N2 latencies in the assessment of peripheral
sensitization in humans.

MATERIALS AND METHODS

Subjects
Thirteen healthy subjects without a history of chronic pain
and neurological disease participated in the study. Exclusion
criteria comprised pregnancy, intake of any medication
(except birth control), and any obvious neurological condition.
The experimental protocol conformed to the standards
set by the Declaration of Helsinki and was approved
by the local ethical committee. All subjects gave written
informed consent.

Experimental Design
In the current study, all subjects participated in two CHEP
recording sessions. Experimental sessions were separated by
at least 48 hours, to a maximum of 7 days. In the second
recording session, subjects underwent 30 min of topical capsaicin
sensitization prior to contact heat stimulation (Figure 1).

Contact Heat Stimulation
A contact heat stimulator (PATHWAY Pain and Sensory
Evaluation System; Medoc, Ramat Yishai, Israel) was used
to deliver noxious heat stimuli. The thermode (27 mm
diameter with a stimulating surface of 572.3 mm2) is composed
of a heating thermofoil covered with a thermo conductive
plastic. The thermofoil allows a heating rate of 70� C/s and
is actively cooled by a peltier element (40� C/s). Contact
heat stimuli were applied in an area [approximately 16 cm2

(1600 mm2)] within the boundaries of the C6 dermatome,
on the dorsum surface, at the base of the thumb from three
baseline temperatures (35, 38.5, and 42� C) in random order.
These were selected to represent starting points below (35
and 38.5� C) and at/above type II AMH nociceptor thresholds
(� 42� C). The order of stimulation was randomized between
subjects and maintained across the �rst and second experimental
session. Irrespective of the baseline temperature, the target peak
stimulation intensity was set to 52� C. The di�erent baseline
temperature conditions are displayed inFigure 1. For each
condition, 10 stimulations (Kramer et al., 2013, 2016) were
applied with an 8–12 s inter-pulse interval (Jutzeler et al.,
2016; Rosner et al., 2018). A low number of stimulations
was used to avoid peripheral sensitization caused by repetitive
cutaneous stimulation. A total of 30 stimulations were performed
on each testing day. After each contact heat stimuli, the
thermode was repositioned within a 16 cm2 (1600 mm2)
boundary (i.e., lifted from the skin and placed at a di�erent
location within the outlined area) to reduce receptor fatigue
(Gre�rath et al., 2007). As a result, no two consecutive
stimulations were performed in exactly the same area. The
same procedure was performed in the capsaicin as in the
no-capsaicin condition. Subjects rated the perceived intensity
using a numeric rating scale ranging from 0 to 10 after each
stimulus (0-no pain, 10-worst pain imaginable). Subjects were
asked to keep their eyes open during contact heat stimuli
and blink, if necessary, to an acoustic cue presented 4 s
after stimulation.
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FIGURE 1 | Study design. Contact heat evoked potentials (CHEPs) were acquired on separate testing days (i.e., with and without capsaicin). Capsaicin was applied
topically for 30 min prior to CHEPs acquisition on day two. CHEP stimulation was applied from three baseline temperatures: (1) 35� C, (2) 38.5� C, and (3) 42� C to a
peak temperature of 52� C. These resulted in stimulus durations of 243, 193, and 143 ms (i.e., onset to peak), respectively. The order of baseline temperature was
randomized, but maintained between experimental sessions. All stimuli were delivered to a 52� C peak temperature. A vertex recording electrode (Cz, referenced to
linked ears) was used to acquire the most prominent CHEP (i.e., N2P2).

Capsaicin Application
Capsaicin was applied preceding contact heat stimulation in the
second CHEP recording session. One ml of 0.075% capsaicin
cream (Hänseler, Herisau, Switzerland) was applied to a 16 cm2

area within the boundaries of the C6 dermatome. Similar
concentrations of capsaicin have been applied previously to
induce experimental pain (Srbely et al., 2010; Andresen et al.,
2011; Jutzeler et al., 2015; Linde and Srbely, 2019). The
16 cm2 (1600 mm2) area was limited by tape. During capsaicin
sensitization, subjects were asked to rate their pain on a numeric
rating scale from 0 to 10 every 5 min. After 30 min of capsaicin
sensitization, the remaining cream was removed.

CHEP Recording
For the electroencephalography scalp recording sites were
prepared with alcohol and Nuprep (D.O. Weaver and Company,
Aurora, CO, United States). Gold cup electrodes were positioned
on Cz and referenced to linked earlobes (Cz-A1-A2) to record
N2 and P2 waveforms. A wet ground strap was attached to
the subjects' forearm. We used a reduced electrode set up as
numerous previous studies have reliably produced N2 and P2
waveforms from the Cz electrode referenced to linked earlobes
(Treede et al., 1988; Bromm and Chen, 1995; Kakigi et al., 2004;
Wydenkeller et al., 2008; Kramer et al., 2012a,b; Albu et al.,
2013; Jutzeler et al., 2015, 2016; Rosner et al., 2018). CHEPs
were sampled at 2000 Hz using a preampli�er (20000� , bandpass
�lter 0.25–300 Hz; ALEA Solutions, Zurich, Switzerland). Data
were recorded in a Labview based program (V1.43 CHEP; ALEA
Solutions, Zurich, Switzerland) using a time-frame of 100 ms pre-
trigger and 1000 ms post-trigger. Data were bandpass �ltered
o�ine with a 0.5–30 Hz �lter.

Data Analysis
EEG Epochs from� 100 pre-trigger to C1000 ms post-
trigger were visually analyzed by a blinded and experienced

examiner (JH), without knowledge of stimulation conditions
or the baseline temperatures. A minimum of nine artifact
(e.g., blink) free trials was included for N2 and P2 waveform
averaging within each condition for each participant. The
average number of trials included in CHEPs waveform averaging
was 9.81� 0.40 (Mean� SD). Two separate examiners (CJ
and JK) con�rmed N2 and P2 waveforms. Disagreement was
discussed between examiners until consensus was reached.
CHEPs parameters (N2 latency, N2 amplitude, P2 latency,
P2 amplitude, and N2P2 amplitude) were calculated from
averaged waveform data.

All statistical analyses were performed in R (Version 3.5.3,
MacOs Mojave). The skewed distribution of CHEP parameters
was corrected by log transformation. A linear mixed e�ects
model with repeated measures was �rst applied to examine
the relationship between time and perceived intensity of
capsaicin application over 30 min. A second linear mixed e�ects
model examined the main e�ects of baseline temperature (35,
38.5, and 42� C) and capsaicin application on log-transformed
CHEP outcomes. Interactions between baseline temperature
and capsaicin were examined to delineate whether baseline
temperature had a di�erential e�ect on CHEPs outcomes.
The model was adjusted for the stimulation order.Post hoc
pairwise comparisons were Bonferroni corrected. Statistical
signi�cance was set ata = 0.05. All of the data used in
our analysis, extracted from CHEP waveforms, is shown in
Supplementary Table S1.

RESULTS

One subject could not tolerate any contact heat stimulation
during application with capsaicin and was excluded from
analysis. The average age of the remaining 12 subjects (10 males)
was 31.5� 7.7 years (� SD).
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Capsaicin Sensitization Period
In agreement with the known e�ects of topically applied 0.075%
capsaicin cream, there was a signi�cant main e�ect of time
on pain intensity rating (b = 0.155, CI [95%]: 0.13 – 0.18,
p < 0.001) (Figure 2).

Main Effect of Capsaicin Sensitization
The grand-average CHEPs for all baseline temperature condition
with and without capsaicin sensitization are illustrated in
Figure 3A. A representative example is illustrated inFigure 4.

Overall, pain ratings to the contact heat stimulation were
signi�cantly higher after the capsaicin sensitization (b = 0.34, CI
[95%]: 0.17 – 0.51,p < 0.001) (Figure 3B). This is consistent
with the known e�ect of capsaicin to induce hyperalgesia to
heat in the primary area of application. CHEP amplitudes (i.e.,
N2P2, N2, and P2) and P2 latency were una�ected by capsaicin
[N2P2 amplitude:b = 0.07, CI [95%]:� 0.08 – 0.22,p = 0.365
(Figure 3C); N2 amplitude:b = 0.10, CI [95%]:� 0.09 – 0.29,
p = 0.296; P2 amplitude:b = 0.02, CI [95%]:� 0.16 – 0.21,
p = 0.823; P2 latencyb = � 0.05, CI [95%]:� 0.10 – 0.00,
p = 0.082]. Overall, N2 latency was signi�cantly reduced after
capsaicin sensitization (b = � 0.17, CI [95%]:� 0.22 –� 0.12,
p < 0.001) (Figure 3D).

Interaction of Baseline Temperature
Condition and Capsaicin Application
There was a signi�cant interaction e�ect between baseline
temperature condition and capsaicin sensitization for N2 latency
(42� C: b = 0.14, CI [95%]: 0.07 – 0.21,p < 0.001). This suggests
that the reduction in N2 latency depended on the baseline
temperature. At 35� C and 38.5� C baseline temperatures, N2
latency was signi�cantly shorter after capsaicin sensitization

FIGURE 2 | Pain ratings to capsaicin exposure over the 30-minute
conditioning period (i.e., pre-contact heat stimulation). During this time,
participants sat quietly and were instructed to rate spontaneously perceived
intensity (0–10) to the area of capsaicin application every 5 min. The baseline
(time 0) recording represents the reported sensation immediately after
capsaicin was applied to the entire area. Contact heat stimulation and the
acquisition of evoked potentials were performed at 30 min, following cream
removal.

(35� C: b = � 0.17, CI [95%]:� 0.24 – � 0.10, p < 0.001;
38.5� C: b = � 0.07, CI [95%]:� 0.11 – � 0.02, p = 0.011).
Only one subject did not demonstrate a decreased N2 latency
following the application of capsaicin and stimulation from a
35� C baseline temperature. From a 38.5� C baseline temperature,
only three subjects demonstrated a nominal increase in N2
latency. N2 latencies were comparable before and after capsaicin
for 42� C baseline condition (b = � 0.03, CI [95%]:� 0.06 – 0.01,
p = 0.166;Figure 3D). There were no interaction e�ects (baseline
temperature condition and capsaicin) for N2P2 amplitude or P2
latency. Model summaries from the statistical analysis are shown
in Supplementary Tables S2, S3.

Addendum to Results
We acquired CHEPs from an additional six participants (3
males, age 25� 3.5 years) to con�rm that the number of
stimulations used in CHEPs acquisition was not a limitation
to our �ndings. Six participants completed study procedures
as outlined above; the only methodological di�erence was
that participants received 20 contact heat stimuli per baseline
temperature as opposed to 10 stimuli. EEG data was recorded
from 32 active electrodes via international 10–20 positioning
(REF) (Brain Vision LLC, Morrisville, NC, United States).
CHEPs waveforms were calculated from the Cz vertex position,
referenced to linked earlobes. N2 latencies were calculated from
averaged waveform data using the �rst 10 stimuli and all 20
stimuli of EEG epochs 100 ms pre-stimulus to 1000 ms post-
stimulus. All CHEPs waveforms were visually inspected for
artifacts (i.e., blink). The average number of trials used in
CHEPs waveform averaging was 19.77� 0.76 for 20 stimuli
and 9.88� 0.34 for 10 stimuli, respectively. N2 latencies were
compared between 10 and 20 stimuli methods of calculation,
using two-samplet-tests. We observed no signi�cant di�erences
between N2 latencies calculated from 10 stimuli vs. 20 stimuli for
all baseline temperature stimulation protocols (35� C: 20 stimuli –
361 ms, CI [95%]: 338–381; 10 stimuli – 366 ms, CI [95%]: 346–
385,p = 0.72; 38.5� C: 20 stimuli – 302 ms, CI [95%]: 289–316;
10 stimuli – 291 ms, CI [95%]: 283–298,p = 0.20; 42� C: 20
stimuli – 268 ms, CI [95%]: 261–276; 10 stimuli – 265 ms, CI
[95%]: 255–276,p = 0.71) (Supplementary Table S4).

We also examined the in�uence of capsaicin on N2 latency
between baseline temperatures for this additionalN = 6 dataset.
Similar to our original �ndings, we observed a main e�ect of
capsaicin sensitization on N2 latency (b = � 0.15, CI [95%]:
� 0.23 – � 0.07, p = 0.001) as well as an interaction e�ect
of capsaicin and baseline temperature (42� C: b = 0.16, CI
[95%]: 0.05 – 0.27,p = 0.01). This interaction e�ect suggests
that the reduction in N2 latency depended on the baseline
temperature. At the 35� C baseline temperature, N2 latency was
signi�cantly reduced after capsaicin sensitization (b = � 0.15,
CI [95%]: � 0.24 – � 0.05, p = 0.014). At 38.5 and 42� C
baseline temperatures, there was no signi�cant e�ect of capsaicin
on N2 latency (38.5� C: b = � 0.04, CI [95%]:� 0.12 – 0.04,
p = 0.364; 42� C: b = 0.00, CI [95%]:� 0.05 – 0.06,p = 0.892)
(Supplementary Table S5). Only 1 of 6 participants did not
demonstrate a decreased N2 latency following the application
of capsaicin and stimulation for both 35 and 38.5� C baseline
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FIGURE 3 | Effect of capsaicin on contact heat evoked potentials (CHEPs).(A) Grand-average N2P2 waveforms from all subjects (n = 12). Shaded area represents
between subject standard deviation.(B) Pain ratings,(C) N2P2 amplitude,(D) N2 latency before and after capsaicin. Pain ratings were signi�cantly increased
following capsaicin application for all baseline temperatures. N2 latency was signi�cantly affected by capsaicin and only when stimulation was performed from 35
and 38.5� C baseline temperatures.� Denotes a signi�cant difference between capsaicin “Yes” and “No” sessions for respective baseline temperatures,p < 0.05.

temperatures, however, the e�ect of capsaicin did not reach
statistical signi�cance for the 38.5� C baseline temperature.
Similar to our original �ndings, N2 latencies were comparable
before and after capsaicin application for the 42� C baseline
temperature (Figure 5).

DISCUSSION

As in previous CHEP studies applying conventional baseline
temperature stimulation (Madsen et al., 2012; Jutzeler
et al., 2015), N2 latency was reduced and pain rating
increased following stimulation in the primary area of
hyperalgesia. The e�ect of sensitization on N2 latency was
signi�cant when stimulation at 35 and 38.5� C baselines.
Increasing the baseline temperature to 42� C attenuated
latency reductions, to the point that N2 latency was not
signi�cantly di�erent following sensitization. These �ndings
were replicated in our additional dataset, with signi�cant
reductions in N2 latency observed at 35� C baseline, non-
signi�cant reductions in N2 latency at 38.5� C in �ve of

six additional participants, and comparable N2 latencies
following capsaicin application for 42� C baseline. Together,
these �ndings from both our original and additional dataset
suggest that recruitment of capsaicin-sensitized a�erents occurs
below 42� C.

N2 latencies obtained during the control session from 35� C
and 42� C baseline temperature conditions were in line with
previously reported normative values for the C6 dermatome
(Jutzeler et al., 2016). The N2 latencies following capsaicin
application in the 35� C baseline condition [319.8� 43.9 ms
(mean � SD)] were signi�cantly earlier than the control
condition (376.8� 45.1 ms) and were also earlier than previously
reported normal values for N2 latencies (384.1� 31.9 ms)
(Jutzeler et al., 2016). This trend was replicated in our
additional validation dataset, with pre-capsaicin N2 latencies
(387.0 � 8.5 ms) in line with previously reported normal
values (384.1� 31.9 ms) and post capsaicin N2 latencies
(334.2 � 42.8 ms) shifting to precede previously reported
normal values (Jutzeler et al., 2016). Together, these �ndings
suggest the e�ect of capsaicin on N2 latency, acquired via 35� C
baseline, was both statistically signi�cant and clinically relevant,
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FIGURE 4 | Contact heat evoked potentials (CHEPs) from a representative subject before(A) and after (B) capsaicin sensitization, recorded in response to
stimulation from a 35, 38.5, and 42� C baseline. The dotted vertical line denotes N2 latency, observed to be earlier in the 35� C baseline condition following capsaicin
sensitization in this representative tracing.

as sensitized N2 latencies occurred earlier than previously
reported normal values.

Our �ndings also clearly demonstrate that reduced N2 latency
is not related to thermal hyperalgesiaper se. This was evidenced
by the fact that pain ratings signi�cantly increased in the primary
area of hyperalgesia for all baseline temperature stimulations,
even in the absence of reduced N2 latency (i.e., 42� C baseline
temperature CHEP stimulation). This temperature dependent
dichotomy of the e�ect of capsaicin on pain ratings and N2
latencies in response to contact heat may suggest separate
mechanisms of peripheral sensitization. Previous studies in
both humans and animals have suggested primary hyperalgesia
to be mediated by the sensitization of C-�ber nociceptors,
while secondary hyperalgesia is mediated by sensitized A-�ber
nociceptors (Culp et al., 1989; Hsieh et al., 2015). Given our
stimulation site was within the area of primary hyperalgesia and
given the neural pathway of CHEPs activation via type II AMH
nociceptors (Chen et al., 2001; Iannetti et al., 2006; Truini et al.,
2007), a possible explaination for our �ndings may be that pain
ratings were in�uenced by C-�ber sensitzation, while reductions
in N2 latencies were mediated by the sensitiztion of type II AMH
nociceptors. Future studies should explore this avenue further
through the use of nerve block or compression ischemia testing
during CHEPs acquisition with capsaicin.

There is little debate that the neural signature of contact heat
stimulation (i.e., vertex N2P2 waveform) arise from activation
of type II AMH nociceptors (Chen et al., 2001; Iannetti et al.,
2006; Truini et al., 2007). It logically follows that sensitizing
type II AMH nociceptors with capsaicin should lead to profound
changes in CHEPs. Our �ndings replicate those of previous
CHEP studies using similar stimulation parameters (35 to 52� C
at 70� C/s) (Madsen et al., 2012; Jutzeler et al., 2015), in that
N2 latency was reduced and pain rating increased in the
primary area of hyperalgesia. The most pragmatic explanation
for a reduction in N2 latency is that capsaicin modulates
type II AMH nociceptors, lowering their activation threshold
to thermal stimulation. From lower baseline temperatures,
threshold is reached faster, temporally recruiting the same or
similar population of thinly myelinated a�erents earlier in
the heat stimulus.

Consistent with the notion of earlier recruitment, stimulation
from more conventional baseline temperatures (e.g., 35� C) was
a requisite parameter to detect signi�cant reductions in N2
latency. Higher temperatures failed to reveal the sensitizing
e�ect of capsaicin. From a 42� C baseline, recruitment of type II
AMH nociceptors may already occur as fast as is physiologically
possible. Recruitment occurs at or above the normal threshold
for activation of type II AMH nociceptors, creating a “�oor
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FIGURE 5 | Effect of capsaicin on contact heat evoked potentials (CHEP) N2
latency with stimulations delivered at 35, 38.5, and 42� C baselines. Data
displayed from additional six participants, that underwent 20 stimulations per
condition as opposed to 10 stimulations.� Denotes a signi�cant difference
between capsaicin “Yes” and “No” sessions for respective baseline
temperatures,p < 0.05.

e�ect” that prevents the measurement of peripheral sensitization.
Overall, these observations suggest that stimulation between 35
and 42� C is key to detecting peripherally sensitized type II
AMH a�erents, which coincides with behavioral evidence of
sensitization below 40� C (Schaldemose et al., 2015).

Contact heat stimulation is now widely regarded as su�cient
for the acquisition of nociceptive evoked potentials. CHEP
stimulation slowly activates nociceptors, sequentially, from a
starting baseline temperature below the recruitment threshold
of type II AMH a�erents (e.g., 35� C). As is evident in
Figure 4, even a low number of stimulations (10) yield a larger
and reliable vertex waveform, particularly at higher baseline
temperatures. This is in line with previous CHEPs studies
(Kramer et al., 2013, 2016), and was further demonstrated in
our own comparison between N2 latencies calculated from 10
stimuli to 20 stimuli, respectively. However, compared to other
forms of noxious stimulation (e.g., laser), evoked potentials
arising from contact heat stimulation are less synchronized
and subject to greater temporal dispersion and higher latency
jitter (variability in latency among averaged trials) (Granovsky
et al., 2008). Nevertheless, contact heat stimulation may present
an opportunity to speci�cally and objectively assess the role
of peripheral sensitization (i.e., lowering of type II AMH
nociceptor thresholds below 42� C). Future studies directly
comparing laser and CHEPs are needed to comprehensively
evaluate sensitivity and optimal stimulation parameters to detect
primary hyperalgesia.

Our control observations (i.e., changing baseline temperature
in the absence of capsaicin) demonstrate an obvious advantage
of increasing the baseline temperature to acquire CHEPs N2P2
amplitudes. This con�rms our previous �ndings (Kramer et al.,

2012a, 2013; Haefeli et al., 2014a). The impact of increasing
the baseline temperature on contact heat evoked potentials
is chie�y a function of increasing correspondence between
the theoretical and acute peak temperature experienced at the
nociceptor. From a 35� C baseline, at 70� C/s, only a fraction
of the nominal peak temperature is reached at the level of the
nociceptors (Baumgartner et al., 2005). This represents a well-
known technical challenge, which is due to the temperature of
the skin lagging behind the temperature of the thermode. As a
result, the thermode returns to baseline (i.e., actively cooling)
before the skin (or the nociceptor) ever reaches the desired
peak temperature. Shifting the starting point of contact heat
stimulation to higher temperatures simply means that higher
peak temperatures can be physiologically achieved. This, in turn,
recruits a larger number of a�erents, yielding higher pain ratings
and increased CHEP amplitudes. Other factors, like improving
synchronization of the a�erent volley by shortening the stimulus
duration, may also play a role in generating larger amplitude
evoked potentials (Iannetti et al., 2004).

An alternative explanation for our results is that peripheral
sensitization shifted recruitment to larger and faster conducting
type II AMH a�erents. From a 35� C baseline temperature,
a reduction in CHEP latency occurs because control
stimulation recruits slower conducting a�erents. Higher
baseline temperatures fail to convey a change in latency shift,
chie�y because the fastest conducting a�erents are already
maximally recruited in the absence of peripheral sensitization
(i.e., “�oor e�ect”). Against such a proposal, our observed change
in N2 latency from 35 to 38.5 and 42� C is almost exactly as
predicted by changes in stimulation duration accompanying
the increase in baseline temperature (i.e., nominal change in
N2 latency predicted by a change in stimulus duration 35 to
38.5� C = � 50 ms, actual change =� 59 � 25 ms; nominal
change in stimulus duration from 35 to 42� C = � 100 ms, actual
change =� 88� 30 ms; values are shown as averages� standard
deviations). Additionally, a recent study reported similar
reductions in N2 latency (341� 90 ms – 285� 34 ms) with
CHEPs baseline temperature increases from 35 to 40� C (Nakata
et al., 2018), albeit non-signi�cant. Overall, this suggests that
similar populations of type II AMH nociceptors are recruited,
across baseline temperatures (i.e., under control conditions).

These observations are limited to the temporal representation
of the vertex N2P2 waveform. Time-frequency analyses may
reveal non-phase locked responses that correspond with
behavioral evidence of primary hyperalgesia. While stimulation
conditions were randomized, capsaicin exposure always followed
a recording session without capsaicin. This was done to avoid
carry-over e�ects of capsaicin but may have in�uenced the
�ndings. However, randomization of recording sessions would
not overcome the inability to successfully blind participants
to the perceptual e�ects of capsaicin, a known limitation
of the capsaicin model. Previous studies have demonstrated
fair to excellent test-retest reliability of CHEPs N2 latencies
from cervical dermatomes (Kramer et al., 2012b) and lumbar
dermatomes (Rosner et al., 2018), providing further con�dence
that our observed reductions in N2 latencies were due to
the e�ects of capsaicin. Finally, a relatively low number
of subjects (n = 12) may have contributed to type II

Frontiers in Human Neuroscience | www.frontiersin.org 7 January 2020 | Volume 13 | Article 459



Linde et al. CHEPs Peripheral Sensitization Parameters

error in relation to some of our observations (e.g., changes in
amplitude). While our �ndings are limited to a small sample size
(n = 12), we demonstrated the ability to successfully replicate our
�ndings with a separate cohort of six participants. Nevertheless,
the e�ect of capsaicin on N2 latency was robust.

CONCLUSION

In conclusion, capsaicin sensitization resulted in signi�cant
reductions in N2 latency when contact heat was delivered from
a conventional baseline temperature (35 and 38.5� C). This e�ect
is attributed to a reduction in activation threshold of type II
AMH nociceptors and stimulation between 35 and 42� C, as
stimulations from 42� C baseline were unchanged by capsaicin.
CHEPs may be useful as a measure of peripheral sensitization
related to the topical application of capsaicin, aiding in the
evaluation of pain mechanisms.
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