Header

UZH-Logo

Maintenance Infos

Digesta passage in common eland (Taurotragus oryx) on a monocot or a dicot diet


Hejcmanová, Pavla; Ortmann, Sylvia; Stoklasová, Lucie; Clauss, Marcus (2020). Digesta passage in common eland (Taurotragus oryx) on a monocot or a dicot diet. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology, 246:110720.

Abstract

The way that fluids and particles move through the forestomach of a ruminant is species-specific, and can be used to classify ruminants according to their digestive physiology into ‘moose-types’ (with little difference in fluid and small particle passage) and ‘cattle-types’ (where fluids move through the forestomach much faster than small particles). So far, ‘moose-types’ appear limited to a dietary niche of browsing, whereas ‘cattle-types’ are particularly prominent in the intermediate and grazing diet niches. However, some species, including members of the spiral-horned antelopes (the Tragelaphini), have a ‘cattle-type’ physiology but a browse-dominated diet niche. Eland (Taurotragus oryx), the largest member of the Tragelaphini, are strict browsers in the wild but have been considered intermediate feeders in the past, and can seemingly be maintained on grass diets. We quantified food intake, mean retention time (MRT) in the gastrointestinal tract and the reticulorumen (RR) of a solute, a small and a large particle marker, and diet digestibility in six eland each fed a monocot (grass hay) and a dicot (lucerne silage) forage. Food intake and digestibility was lower on the diet with higher fibre content (grass hay), with corresponding longer MRT. At the higher intakes on lucerne, the difference in MRT between small and large particles was larger, indicating a greater reliance on particle sorting and clearance under this condition of potentially limiting gut capacity. Regardless of diet or intake, the ratio of small particle and solute MRT in the RR was constant and small, at a quotient of 1.54, classifying the eland as a typical ‘moose-type’ ruminant. This finding is consistent with previous literature reports on low faecal metabolic nitrogen and high apparent protein digestibility in eland. Given the relative ease at which eland can be maintained under farm husbandry conditions, they appear ideal model ruminants to study the effects of differences in rumen physiology compared to cattle.

Abstract

The way that fluids and particles move through the forestomach of a ruminant is species-specific, and can be used to classify ruminants according to their digestive physiology into ‘moose-types’ (with little difference in fluid and small particle passage) and ‘cattle-types’ (where fluids move through the forestomach much faster than small particles). So far, ‘moose-types’ appear limited to a dietary niche of browsing, whereas ‘cattle-types’ are particularly prominent in the intermediate and grazing diet niches. However, some species, including members of the spiral-horned antelopes (the Tragelaphini), have a ‘cattle-type’ physiology but a browse-dominated diet niche. Eland (Taurotragus oryx), the largest member of the Tragelaphini, are strict browsers in the wild but have been considered intermediate feeders in the past, and can seemingly be maintained on grass diets. We quantified food intake, mean retention time (MRT) in the gastrointestinal tract and the reticulorumen (RR) of a solute, a small and a large particle marker, and diet digestibility in six eland each fed a monocot (grass hay) and a dicot (lucerne silage) forage. Food intake and digestibility was lower on the diet with higher fibre content (grass hay), with corresponding longer MRT. At the higher intakes on lucerne, the difference in MRT between small and large particles was larger, indicating a greater reliance on particle sorting and clearance under this condition of potentially limiting gut capacity. Regardless of diet or intake, the ratio of small particle and solute MRT in the RR was constant and small, at a quotient of 1.54, classifying the eland as a typical ‘moose-type’ ruminant. This finding is consistent with previous literature reports on low faecal metabolic nitrogen and high apparent protein digestibility in eland. Given the relative ease at which eland can be maintained under farm husbandry conditions, they appear ideal model ruminants to study the effects of differences in rumen physiology compared to cattle.

Statistics

Citations

Dimensions.ai Metrics
4 citations in Web of Science®
5 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

54 downloads since deposited on 08 May 2020
12 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Veterinary Clinic > Department of Small Animals
Dewey Decimal Classification:570 Life sciences; biology
630 Agriculture
Scopus Subject Areas:Life Sciences > Biochemistry
Life Sciences > Physiology
Life Sciences > Aquatic Science
Life Sciences > Animal Science and Zoology
Life Sciences > Molecular Biology
Uncontrolled Keywords:Biochemistry, Physiology, Molecular Biology
Language:English
Date:1 May 2020
Deposited On:08 May 2020 15:15
Last Modified:27 Jan 2022 01:57
Publisher:Elsevier
ISSN:1095-6433
OA Status:Hybrid
Publisher DOI:https://doi.org/10.1016/j.cbpa.2020.110720
  • Content: Published Version
  • Language: English
  • Licence: Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)