Header

UZH-Logo

Maintenance Infos

Floral isolation, specialized pollination, and pollinator behavior in orchids


Schlüter, P M; Schiestl, F P (2009). Floral isolation, specialized pollination, and pollinator behavior in orchids. Annual Review of Entomology, 54:425-446.

Abstract

Floral isolation is a form of prepollination reproductive isolation mediated by floral morphology (morphological isolation) and pollinator behavior (ethological isolation). Here we review mechanisms and evolutionary consequences of floral isolation in various pollination systems. Furthermore, we compare key features of floral isolation, i.e., pollinator sharing and specialization in pollination, in different orchid pollination systems. In orchid pollination, pollinator sharing is generally low, indicating strong floral isolation. The pollinators' motivation to visit flowers (specifically) can be due to both foraging or reproductive behavior. In both types of behavior, innate preferences for floral signals can be quickly overruled by learning. In pollination systems in which reproductive behavior of pollinators triggers flower visits, lower pollinator sharing was evident compared with systems with foraging behavior, probably because pollinators displaying reproductive behavior show higher fidelity in their visitation patterns. Orchids pollinated through reproductive behavior also use fewer pollinators than orchids pollinated through foraging behavior. No association between specialization and pollinator sharing was found. Thus, generalized pollination does not impede floral isolation, as orchids with many pollinators may nonetheless have low pollinator sharing. Specialization in pollination was, however, linked to orchid species richness in our analysis. Flower size, spur, and column morphology are most important for morphological isolation, and floral scent is most important for ethological isolation. These traits may be based on few genes, implying that floral isolation can be brought about by few genes of large effect.

Abstract

Floral isolation is a form of prepollination reproductive isolation mediated by floral morphology (morphological isolation) and pollinator behavior (ethological isolation). Here we review mechanisms and evolutionary consequences of floral isolation in various pollination systems. Furthermore, we compare key features of floral isolation, i.e., pollinator sharing and specialization in pollination, in different orchid pollination systems. In orchid pollination, pollinator sharing is generally low, indicating strong floral isolation. The pollinators' motivation to visit flowers (specifically) can be due to both foraging or reproductive behavior. In both types of behavior, innate preferences for floral signals can be quickly overruled by learning. In pollination systems in which reproductive behavior of pollinators triggers flower visits, lower pollinator sharing was evident compared with systems with foraging behavior, probably because pollinators displaying reproductive behavior show higher fidelity in their visitation patterns. Orchids pollinated through reproductive behavior also use fewer pollinators than orchids pollinated through foraging behavior. No association between specialization and pollinator sharing was found. Thus, generalized pollination does not impede floral isolation, as orchids with many pollinators may nonetheless have low pollinator sharing. Specialization in pollination was, however, linked to orchid species richness in our analysis. Flower size, spur, and column morphology are most important for morphological isolation, and floral scent is most important for ethological isolation. These traits may be based on few genes, implying that floral isolation can be brought about by few genes of large effect.

Statistics

Citations

Dimensions.ai Metrics
124 citations in Web of Science®
132 citations in Scopus®
171 citations in Microsoft Academic
Google Scholar™

Altmetrics

Downloads

3 downloads since deposited on 03 Jun 2009
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Systematic and Evolutionary Botany
07 Faculty of Science > Department of Plant and Microbial Biology
Dewey Decimal Classification:580 Plants (Botany)
Language:English
Date:2009
Deposited On:03 Jun 2009 13:47
Last Modified:17 Feb 2018 22:52
Publisher:Annual Reviews
ISSN:0066-4170
OA Status:Closed
Publisher DOI:https://doi.org/10.1146/annurev.ento.54.110807.090603
PubMed ID:19067636

Download