Header

UZH-Logo

Maintenance Infos

Rational terms of UV origin at two loops


Pozzorini, Stefano; Zhang, Hantian; Zoller, Max F (2020). Rational terms of UV origin at two loops. Journal of High Energy Physics, (5):77.

Abstract

The advent of efficient numerical algorithms for the construction of one-loop amplitudes has played a crucial role in the automation of NLO calculations, and the development of similar algorithms at two loops is a natural strategy for NNLO automation. Within a numerical framework the numerator of loop integrals is usually constructed in four dimensions, and the missing rational terms, which arise from the interplay of the (D − 4)-dimensional parts of the loop numerator with 1/(D − 4) poles in D dimensions, are reconstructed separately. At one loop, such rational terms arise only from UV divergences and can be restored through process-independent local counterterms. In this paper we investigate the behaviour of rational terms of UV origin at two loops. The main result is a general formula that combines the subtraction of UV poles with the reconstruction of the associated rational parts at two loops. This formula has the same structure as the R-operation, and all poles and rational parts are described through a finite set of process-independent local counterterms. We also present a general formula for the calculation of all relevant two-loop rational counterterms in any renormalisable theory based on one-scale tadpole integrals. As a first application, we derive the full set of two-loop rational counterterms for QED in the Rξ -gauge.

Abstract

The advent of efficient numerical algorithms for the construction of one-loop amplitudes has played a crucial role in the automation of NLO calculations, and the development of similar algorithms at two loops is a natural strategy for NNLO automation. Within a numerical framework the numerator of loop integrals is usually constructed in four dimensions, and the missing rational terms, which arise from the interplay of the (D − 4)-dimensional parts of the loop numerator with 1/(D − 4) poles in D dimensions, are reconstructed separately. At one loop, such rational terms arise only from UV divergences and can be restored through process-independent local counterterms. In this paper we investigate the behaviour of rational terms of UV origin at two loops. The main result is a general formula that combines the subtraction of UV poles with the reconstruction of the associated rational parts at two loops. This formula has the same structure as the R-operation, and all poles and rational parts are described through a finite set of process-independent local counterterms. We also present a general formula for the calculation of all relevant two-loop rational counterterms in any renormalisable theory based on one-scale tadpole integrals. As a first application, we derive the full set of two-loop rational counterterms for QED in the Rξ -gauge.

Statistics

Citations

Altmetrics

Downloads

6 downloads since deposited on 11 Jun 2020
6 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Physics Institute
Dewey Decimal Classification:530 Physics
Scopus Subject Areas:Physical Sciences > Nuclear and High Energy Physics
Uncontrolled Keywords:Nuclear and High Energy Physics
Language:English
Date:1 May 2020
Deposited On:11 Jun 2020 14:56
Last Modified:12 Jun 2020 20:00
Publisher:Springer
ISSN:1029-8479
OA Status:Gold
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1007/jhep05(2020)077

Download

Gold Open Access

Download PDF  'Rational terms of UV origin at two loops'.
Preview
Content: Published Version
Filetype: PDF
Size: 734kB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)