Abstract
Large-scale genetic perturbation screens are a classical approach in biology and have been crucial for many discoveries. New technologies can now provide unbiased quantification of multiple molecular and phenotypic changes across tens of thousands of individual cells from large numbers of perturbed cell populations simultaneously. In this Review, we describe how these developments have enabled the discovery of new principles of intracellular and intercellular organization, novel interpretations of genetic perturbation effects and the inference of novel functional genetic interactions. These advances now allow more accurate and comprehensive analyses of gene function in cells using genetic perturbation screens.