Abstract
Social distancing and isolation have been widely introduced to counter the COVID-19 pandemic. Adverse social, psychological and economic consequences of a complete or near-complete lockdown demand the development of more moderate contact-reduction policies. Adopting a social network approach, we evaluate the effectiveness of three distancing strategies designed to keep the curve flat and aid compliance in a post-lockdown world. These are: limiting interaction to a few repeated contacts akin to forming social bubbles; seeking similarity across contacts; and strengthening communities via triadic strategies. We simulate stochastic infection curves incorporating core elements from infection models, ideal-type social network models and statistical relational event models. We demonstrate that a strategic social network-based reduction of contact strongly enhances the effectiveness of social distancing …