Header

UZH-Logo

Maintenance Infos

Differential dynamics of early stages of platelet adhesion and spreading on collagen IV- and fibrinogen-coated surfaces


Horev, Melanie B; Zabary, Yishaia; Zarka, Revital; Sorrentino, Simona; Medalia, Ohad; Zaritsky, Assaf; Geiger, Benjamin (2020). Differential dynamics of early stages of platelet adhesion and spreading on collagen IV- and fibrinogen-coated surfaces. F1000Research, 9:ISF-449.

Abstract

Background: Upon wound formation, platelets adhere to the neighboring extracellular matrix and spread on it, a process which is critical for physiological wound healing. Multiple external factors, such as the molecular composition of the environment and its mechanical properties, play a key role in this process and direct its speed and outcome. Methods: We combined live cell imaging, quantitative interference reflection microscopy and cryo-electron tomography to characterize, at a single platelet level, the differential spatiotemporal dynamics of the adhesion process to fibrinogen- and collagen IV-functionalized surfaces. Results: Initially, platelets sense both substrates by transient rapid extensions of filopodia. On collagen IV, a short-term phase of filopodial extension is followed by lamellipodia-based spreading. This transition is preceded by the extension of a single or couple of microtubules into the platelet's periphery and their apparent insertion into the core of the filopodia. On fibrinogen surfaces, the filopodia-to-lamellipodia transition was partial and microtubule extension was not observed leading to limited spreading, which could be restored by manganese or thrombin. Conclusions: Based on these results, we propose that interaction with collagen IV stimulate platelets to extend microtubules to peripheral filopodia, which in turn, enhances filopodial-to-lamellipodial transition and overall lamellipodia-based spreading. Fibrinogen, on the other hand, fails to induce these early microtubule extensions, leading to full lamellipodia spreading in only a fraction of the seeded platelets. We further suggest that activation of integrin αIIbβ3 is essential for filopodial-to-lamellipodial transition, based on the capacity of integrin activators to enhance lamellipodia spreading on fibrinogen.

Abstract

Background: Upon wound formation, platelets adhere to the neighboring extracellular matrix and spread on it, a process which is critical for physiological wound healing. Multiple external factors, such as the molecular composition of the environment and its mechanical properties, play a key role in this process and direct its speed and outcome. Methods: We combined live cell imaging, quantitative interference reflection microscopy and cryo-electron tomography to characterize, at a single platelet level, the differential spatiotemporal dynamics of the adhesion process to fibrinogen- and collagen IV-functionalized surfaces. Results: Initially, platelets sense both substrates by transient rapid extensions of filopodia. On collagen IV, a short-term phase of filopodial extension is followed by lamellipodia-based spreading. This transition is preceded by the extension of a single or couple of microtubules into the platelet's periphery and their apparent insertion into the core of the filopodia. On fibrinogen surfaces, the filopodia-to-lamellipodia transition was partial and microtubule extension was not observed leading to limited spreading, which could be restored by manganese or thrombin. Conclusions: Based on these results, we propose that interaction with collagen IV stimulate platelets to extend microtubules to peripheral filopodia, which in turn, enhances filopodial-to-lamellipodial transition and overall lamellipodia-based spreading. Fibrinogen, on the other hand, fails to induce these early microtubule extensions, leading to full lamellipodia spreading in only a fraction of the seeded platelets. We further suggest that activation of integrin αIIbβ3 is essential for filopodial-to-lamellipodial transition, based on the capacity of integrin activators to enhance lamellipodia spreading on fibrinogen.

Statistics

Citations

Dimensions.ai Metrics

Altmetrics

Downloads

18 downloads since deposited on 06 Aug 2020
15 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Department of Biochemistry
07 Faculty of Science > Department of Biochemistry
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Scopus Subject Areas:Life Sciences > General Biochemistry, Genetics and Molecular Biology
Life Sciences > General Immunology and Microbiology
Life Sciences > General Pharmacology, Toxicology and Pharmaceutics
Language:English
Date:2020
Deposited On:06 Aug 2020 14:43
Last Modified:01 Oct 2020 16:51
Publisher:Faculty of 1000 Ltd.
ISSN:2046-1402
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.12688/f1000research.23598.2
PubMed ID:32566134

Download

Gold Open Access

Download PDF  'Differential dynamics of early stages of platelet adhesion and spreading on collagen IV- and fibrinogen-coated surfaces'.
Preview
Content: Published Version
Language: English
Filetype: PDF
Size: 10MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)