Navigation auf zora.uzh.ch

Search ZORA

ZORA (Zurich Open Repository and Archive)

Lactoferrin-hexon interactions mediate CAR-independent adenovirus infection of human respiratory cells

Persson, B David; Lenman, Annasara; Frängsmyr, Lars; Schmid, Markus; Ahlm, Clas; Plückthun, Andreas; Jenssen, Håvard; Arnberg, Niklas (2020). Lactoferrin-hexon interactions mediate CAR-independent adenovirus infection of human respiratory cells. Journal of Virology, 94(14):e00542-20.

Abstract

Virus entry into host cells is a complex process that is largely regulated by access to specific cellular receptors. Human adenoviruses (HAdVs) and many other viruses use cell adhesion molecules such as the coxsackievirus and adenovirus receptor (CAR) for attachment to and entry into target cells. These molecules are rarely expressed on the apical side of polarized epithelial cells, which raises the question of how adenoviruses-and other viruses that engage cell adhesion molecules-enter polarized cells from the apical side to initiate infection. We have previously shown that species C HAdVs utilize lactoferrin-a common innate immune component secreted to respiratory mucosa-for infection via unknown mechanisms. Using a series of biochemical, cellular, and molecular biology approaches, we mapped this effect to the proteolytically cleavable, positively charged, N-terminal 49 residues of human lactoferrin (hLF) known as human lactoferricin (hLfcin). Lactoferricin (Lfcin) binds to the hexon protein on the viral capsid and anchors the virus to an unknown receptor structure of target cells, resulting in infection. These findings suggest that HAdVs use distinct cell entry mechanisms at different stages of infection. To initiate infection, entry is likely to occur at the apical side of polarized epithelial cells, largely by means of hLF and hLfcin bridging HAdV capsids via hexons to as-yet-unknown receptors; when infection is established, progeny virions released from the basolateral side enter neighboring cells by means of hLF/hLfcin and CAR in parallel.IMPORTANCE Many viruses enter target cells using cell adhesion molecules as receptors. Paradoxically, these molecules are abundant on the lateral and basolateral side of intact, polarized, epithelial target cells, but absent on the apical side that must be penetrated by incoming viruses to initiate infection. Our study provides a model whereby viruses use different mechanisms to infect polarized epithelial cells depending on which side of the cell-apical or lateral/basolateral-is attacked. This study may also be useful to understand the biology of other viruses that use cell adhesion molecules as receptors.

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Department of Biochemistry
07 Faculty of Science > Department of Biochemistry
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Scopus Subject Areas:Life Sciences > Microbiology
Life Sciences > Immunology
Life Sciences > Insect Science
Life Sciences > Virology
Language:English
Date:1 July 2020
Deposited On:05 Aug 2020 15:35
Last Modified:22 Mar 2025 02:42
Publisher:American Society for Microbiology
ISSN:0022-538X
OA Status:Hybrid
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1128/JVI.00542-20
PubMed ID:32376620
Download PDF  'Lactoferrin-hexon interactions mediate CAR-independent adenovirus infection of human respiratory cells'.
Preview
  • Content: Published Version
  • Language: English
  • Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)

Metadata Export

Statistics

Citations

Dimensions.ai Metrics
16 citations in Web of Science®
16 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

34 downloads since deposited on 05 Aug 2020
5 downloads since 12 months
Detailed statistics

Authors, Affiliations, Collaborations

Similar Publications