Abstract
Background: Alpha/delta neurofeedback has been shown to be a potential treatment option for chronic subjective tinnitus. Traditional neurofeedback approaches working with a handful of surface electrodes have been criticized, however, due to their low spatial specificity.
Objective: The purpose of this study was to evaluate an innovative tomographic neurofeedback protocol that combines neural activity measured across the whole scalp with sLORETA source estimation.
Methods: Forty-eight tinnitus patients participated in 15 neurofeedback training sessions as well as extensive pre, post, and follow-up testing. Patients were randomly assigned to either a tomographic (TONF) or a traditional electrode-based neurofeedback (NTNF) group. Main outcome measures of this study were defined as tinnitus-related distress measured with the Tinnitus Handicap Inventory (THI) and Tinnitus Questionnaire (TQ), tinnitus loudness, and resting-state EEG activity in trained frequency bands.
Results: For both groups a significant reduction of tinnitus-related distress and tinnitus loudness was found. While distress changes remained persistent irrespective of group, loudness levels returned to baseline in the follow-up period. No significant between-group differences between the 2 neurofeedback applications (TONF vs. NTNF) were found, which suggests a similar contribution to symptom improvement. The trained alpha/delta ratio increased significantly over the course of the training and remained stable in the follow-up period. This effect was found irrespective of group on both surface and source levels with no meaningful differences between the 2 groups.
Conclusions: Our study shows that a tomographic alpha/delta protocol should be considered a promising addition to tinnitus treatment but that more individually specific neurofeedback protocols should be developed.