Header

UZH-Logo

Maintenance Infos

Myocardial creep-induced misalignment artifacts in PET/MR myocardial perfusion imaging


von Felten, Elia; Benetos, Georgios; Patriki, Dimitri; Benz, Dominik C; Rampidis, Georgios P; Giannopoulos, Andreas A; Bakula, Adam; Gräni, Christoph; Pazhenkottil, Aju P; Gebhard, Catherine; Fuchs, Tobias A; Kaufmann, Philipp A; Buechel, Ronny R (2020). Myocardial creep-induced misalignment artifacts in PET/MR myocardial perfusion imaging. European Journal of Nuclear Medicine and Molecular Imaging:Epub ahead of print.

Abstract

PURPOSE

Misalignment between positron emission tomography (PET) datasets and attenuation correction (AC) maps is a potential source of artifacts in myocardial perfusion imaging (MPI). We assessed the impact of adenosine on the alignment of AC maps derived from magnetic resonance (MR) and PET datasets during MPI on a hybrid PET/MR scanner.

METHODS

Twenty-eight volunteers underwent adenosine stress and rest 13N-ammonia MPI on a PET/MR. We acquired Dixon sequences for the creation of MRAC maps. After reconstruction of the original non-shifted PET images, we examined MRAC and PET datasets for cardiac spatial misalignment and, if necessary, reconstructed a second set of shifted PET images after manually adjusting co-registration. Summed rest, stress, and difference scores (SRS, SSS, and SDS) were compared between shifted and non-shifted PET images. Additionally, we measured the amount of cranial movement of the heart (i.e., myocardial creep) after termination of adenosine infusion.

RESULTS

Realignment was necessary for 25 (89.3%) stress and 12 (42.9%) rest PET datasets. Median SRS, SSS, and SDS of the non-shifted images were 6 (IQR = 4-7), 12 (IQR = 7-18), and 8 (IQR = 2-11), respectively, and of the shifted images 2 (IQR = 1-6), 4 (IQR = 7-18), and 1 (IQR = 0-2), respectively. All three scores were significantly higher in non-shifted versus shifted images (all p < 0.05). The difference in SDS correlated moderately but significantly with the amount of myocardial creep (r = 0.541, p = 0.005).

CONCLUSION

Misalignment of MRAC and PET datasets commonly occurs during adenosine stress MPI on a hybrid PET/MR device, potentially leading to an increase in false-positive findings. Our results suggest that myocardial creep may substantially account for this and prompt for a careful review and correction of PET/MRAC data.

Abstract

PURPOSE

Misalignment between positron emission tomography (PET) datasets and attenuation correction (AC) maps is a potential source of artifacts in myocardial perfusion imaging (MPI). We assessed the impact of adenosine on the alignment of AC maps derived from magnetic resonance (MR) and PET datasets during MPI on a hybrid PET/MR scanner.

METHODS

Twenty-eight volunteers underwent adenosine stress and rest 13N-ammonia MPI on a PET/MR. We acquired Dixon sequences for the creation of MRAC maps. After reconstruction of the original non-shifted PET images, we examined MRAC and PET datasets for cardiac spatial misalignment and, if necessary, reconstructed a second set of shifted PET images after manually adjusting co-registration. Summed rest, stress, and difference scores (SRS, SSS, and SDS) were compared between shifted and non-shifted PET images. Additionally, we measured the amount of cranial movement of the heart (i.e., myocardial creep) after termination of adenosine infusion.

RESULTS

Realignment was necessary for 25 (89.3%) stress and 12 (42.9%) rest PET datasets. Median SRS, SSS, and SDS of the non-shifted images were 6 (IQR = 4-7), 12 (IQR = 7-18), and 8 (IQR = 2-11), respectively, and of the shifted images 2 (IQR = 1-6), 4 (IQR = 7-18), and 1 (IQR = 0-2), respectively. All three scores were significantly higher in non-shifted versus shifted images (all p < 0.05). The difference in SDS correlated moderately but significantly with the amount of myocardial creep (r = 0.541, p = 0.005).

CONCLUSION

Misalignment of MRAC and PET datasets commonly occurs during adenosine stress MPI on a hybrid PET/MR device, potentially leading to an increase in false-positive findings. Our results suggest that myocardial creep may substantially account for this and prompt for a careful review and correction of PET/MRAC data.

Statistics

Citations

Altmetrics

Downloads

0 downloads since deposited on 03 Sep 2020
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Nuclear Medicine
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Health Sciences > Radiology, Nuclear Medicine and Imaging
Language:English
Date:18 July 2020
Deposited On:03 Sep 2020 11:32
Last Modified:04 Sep 2020 20:00
Publisher:Springer
ISSN:1619-7070
OA Status:Hybrid
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1007/s00259-020-04956-y
PubMed ID:32681446

Download

Hybrid Open Access

Download PDF  'Myocardial creep-induced misalignment artifacts in PET/MR myocardial perfusion imaging'.
Preview
Content: Published Version
Filetype: PDF
Size: 8MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)