Header

UZH-Logo

Maintenance Infos

Risks and opportunities for a Swiss hydroelectricity company in a changing climate


Hakala, Kirsti; Addor, Nans; Gobbe, Thibault; Ruffieux, Johann; Seibert, Jan (2020). Risks and opportunities for a Swiss hydroelectricity company in a changing climate. Hydrology and Earth System Sciences, 24(7):3815-3833.

Abstract

Anticipating and adapting to climate change impacts on water resources requires a detailed understanding of future hydroclimatic changes and of stakeholders' vulnerability to these changes. However, impact studies are often conducted at a spatial scale that is too coarse to capture the specificity of individual catchments, and, importantly, the changes they focus on are not necessarily the changes most critical to stakeholders. While recent studies have combined hydrological and electricity market modeling, they tend to aggregate all climate impacts by focusing solely on reservoir profitability. Here, we collaborated with Groupe E, a hydroelectricity company operating several reservoirs in the Swiss pre-Alps, and we co-produced hydroclimatic projections tailored to support the upcoming negotiations of their water concession renewal. We started by identifying the vulnerabilities of their activities to climate change; together, we then selected streamflow and electricity demand indices to characterize the associated risks and opportunities. We provided Groupe E with figures showing the projected impacts, which were refined over several meetings. The selected indices enabled us to assess a variety of impacts induced by changes in (i) the seasonal water volume distribution, (ii) low flows, (iii) high flows, and (iv) electricity demand. This enabled us to identify key opportunities (e.g., the future increase in reservoir inflow in winter, when electricity prices have historically been high) and risks (e.g., the expected increase in consecutive days of low flows in summer and fall which is likely to make it more difficult to meet residual flow requirements). We highlight that the hydrological opportunities and risks associated with reservoir management in a changing climate depend on a range of factors beyond those covered by traditional impact studies. This stakeholder-centered approach, which relies on identifying stakeholder's needs and using them to inform the production and visualization of impact projections, is transferable to
other climate impact studies, in the field of water resources and beyond.

Abstract

Anticipating and adapting to climate change impacts on water resources requires a detailed understanding of future hydroclimatic changes and of stakeholders' vulnerability to these changes. However, impact studies are often conducted at a spatial scale that is too coarse to capture the specificity of individual catchments, and, importantly, the changes they focus on are not necessarily the changes most critical to stakeholders. While recent studies have combined hydrological and electricity market modeling, they tend to aggregate all climate impacts by focusing solely on reservoir profitability. Here, we collaborated with Groupe E, a hydroelectricity company operating several reservoirs in the Swiss pre-Alps, and we co-produced hydroclimatic projections tailored to support the upcoming negotiations of their water concession renewal. We started by identifying the vulnerabilities of their activities to climate change; together, we then selected streamflow and electricity demand indices to characterize the associated risks and opportunities. We provided Groupe E with figures showing the projected impacts, which were refined over several meetings. The selected indices enabled us to assess a variety of impacts induced by changes in (i) the seasonal water volume distribution, (ii) low flows, (iii) high flows, and (iv) electricity demand. This enabled us to identify key opportunities (e.g., the future increase in reservoir inflow in winter, when electricity prices have historically been high) and risks (e.g., the expected increase in consecutive days of low flows in summer and fall which is likely to make it more difficult to meet residual flow requirements). We highlight that the hydrological opportunities and risks associated with reservoir management in a changing climate depend on a range of factors beyond those covered by traditional impact studies. This stakeholder-centered approach, which relies on identifying stakeholder's needs and using them to inform the production and visualization of impact projections, is transferable to
other climate impact studies, in the field of water resources and beyond.

Statistics

Citations

Dimensions.ai Metrics
2 citations in Web of Science®
2 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

14 downloads since deposited on 27 Aug 2020
11 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Scopus Subject Areas:Physical Sciences > Water Science and Technology
Physical Sciences > Earth and Planetary Sciences (miscellaneous)
Language:English
Date:29 July 2020
Deposited On:27 Aug 2020 15:30
Last Modified:28 Aug 2020 20:00
Publisher:Copernicus Publications
ISSN:1027-5606
OA Status:Gold
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.5194/hess-24-3815-2020

Download

Gold Open Access

Download PDF  'Risks and opportunities for a Swiss hydroelectricity company in a changing climate'.
Preview
Content: Published Version
Language: English
Filetype: PDF
Size: 5MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)