Header

UZH-Logo

Maintenance Infos

Identifying and Describing Information Seeking Tasks


Satterfield, Chris; Fritz, Thomas; Murphy, Gail C (2020). Identifying and Describing Information Seeking Tasks. In: 35th IEEE/ACM International Conference on Automated Software Engineering, online, 21 September 2020 - 25 September 2020.

Abstract

A software developer works on many tasks per day, frequently switching between these tasks back and forth. This constant churn of tasks makes it difficult for a developer to know the specifics of when they worked on what task, complicating task resumption, planning, retrospection, and reporting activities. In a first step towards an automated aid to this issue, we introduce a new approach to help identify the topic of work during an information seeking task — one of the most common types of tasks that software developers face — that is based on capturing the contents of the developer’s active window at regular intervals and creating a vector representation of key information the developer viewed. To evaluate our approach, we created a data set with multiple developers working on the same set of six information seeking tasks that we also make available for other researchers to investigate similar approaches. Our analysis shows that our approach enables: 1) segments of a developer’s work to be automatically associated with a task from a known set of tasks with average accuracy of 70.6%, and 2) a word cloud describing a segment of work that a developer can use to recognize a task with average accuracy of 67.9%.

Abstract

A software developer works on many tasks per day, frequently switching between these tasks back and forth. This constant churn of tasks makes it difficult for a developer to know the specifics of when they worked on what task, complicating task resumption, planning, retrospection, and reporting activities. In a first step towards an automated aid to this issue, we introduce a new approach to help identify the topic of work during an information seeking task — one of the most common types of tasks that software developers face — that is based on capturing the contents of the developer’s active window at regular intervals and creating a vector representation of key information the developer viewed. To evaluate our approach, we created a data set with multiple developers working on the same set of six information seeking tasks that we also make available for other researchers to investigate similar approaches. Our analysis shows that our approach enables: 1) segments of a developer’s work to be automatically associated with a task from a known set of tasks with average accuracy of 70.6%, and 2) a word cloud describing a segment of work that a developer can use to recognize a task with average accuracy of 67.9%.

Statistics

Downloads

62 downloads since deposited on 28 Sep 2020
62 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Conference or Workshop Item (Paper), refereed, original work
Communities & Collections:03 Faculty of Economics > Department of Informatics
Dewey Decimal Classification:000 Computer science, knowledge & systems
Language:English
Event End Date:25 September 2020
Deposited On:28 Sep 2020 05:33
Last Modified:29 Sep 2020 03:39
Publisher:IEEE/ACM
OA Status:Green
Other Identification Number:merlin-id:19807

Download

Green Open Access

Download PDF  'Identifying and Describing Information Seeking Tasks'.
Preview
Content: Published Version
Filetype: PDF
Size: 1MB