Header

UZH-Logo

Maintenance Infos

High‐resolution MRI of mummified tissues using advanced short‐T2 methodology and hardware


Baadsvik, Emily Louise; Weiger, Markus; Froidevaux, Romain; Rösler, Manuela Barbara; Brunner, David Otto; Öhrström, Lena; Rühli, Frank Jakobus; Eppenberger, Patrick; Pruessmann, Klaas Paul (2020). High‐resolution MRI of mummified tissues using advanced short‐T2 methodology and hardware. Magnetic Resonance in Medicine:Epub ahead of print.

Abstract

Purpose: Evolutionary medicine aims to study disease development from a long-term perspective, and through the analysis of mummified tissue, timescales of several thousand years are unlocked. Due to the status of mummies as ancient relics, noninvasive techniques are preferable, and, currently, CT imaging is the most widespread method. However, CT images lack soft-tissue contrast, making complementary MRI data desirable. Unfortunately, the dehydrated nature and short T2 times of mummified tissues render them practically invisible to standard MRI techniques. Specialized short-T2 approaches have therefore been used, but currently suffer severe resolution limitations. The purpose of the present study is to improve resolution in MRI of mummified tissues.

Methods: The zero-TE-based hybrid filling technique, together with a high-performance magnetic field gradient, was used to image three ancient Egyptian mummified human body parts: a hand, a foot, and a head. A similar pairing has already been shown to increase resolution and image quality in MRI of short-T2 tissues.

Results: MRI images of yet unparalleled image quality were obtained for all samples, reaching isotropic resolutions of 0.6 mm and SNR values above 100. The same general features as present in CT images were depicted but with different contrast, particularly for regions containing embalming substances.

Conclusion: Mummy MRI is a potentially valuable tool for (paleo)pathological studies, as well as for investigations into ancient mummification processes. The results presented here show sufficient improvement in the depiction of mummified tissues to clear new paths for the exploration of this field.

Keywords: HYFI; ZTE; ancient Egyptian mummy; high resolution; high-performance gradient; short T2.

Abstract

Purpose: Evolutionary medicine aims to study disease development from a long-term perspective, and through the analysis of mummified tissue, timescales of several thousand years are unlocked. Due to the status of mummies as ancient relics, noninvasive techniques are preferable, and, currently, CT imaging is the most widespread method. However, CT images lack soft-tissue contrast, making complementary MRI data desirable. Unfortunately, the dehydrated nature and short T2 times of mummified tissues render them practically invisible to standard MRI techniques. Specialized short-T2 approaches have therefore been used, but currently suffer severe resolution limitations. The purpose of the present study is to improve resolution in MRI of mummified tissues.

Methods: The zero-TE-based hybrid filling technique, together with a high-performance magnetic field gradient, was used to image three ancient Egyptian mummified human body parts: a hand, a foot, and a head. A similar pairing has already been shown to increase resolution and image quality in MRI of short-T2 tissues.

Results: MRI images of yet unparalleled image quality were obtained for all samples, reaching isotropic resolutions of 0.6 mm and SNR values above 100. The same general features as present in CT images were depicted but with different contrast, particularly for regions containing embalming substances.

Conclusion: Mummy MRI is a potentially valuable tool for (paleo)pathological studies, as well as for investigations into ancient mummification processes. The results presented here show sufficient improvement in the depiction of mummified tissues to clear new paths for the exploration of this field.

Keywords: HYFI; ZTE; ancient Egyptian mummy; high resolution; high-performance gradient; short T2.

Statistics

Citations

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Evolutionary Medicine
Dewey Decimal Classification:610 Medicine & health
Uncontrolled Keywords:Radiology Nuclear Medicine and imaging
Language:English
Date:3 October 2020
Deposited On:06 Oct 2020 07:45
Last Modified:06 Oct 2020 07:45
Publisher:Wiley-Blackwell Publishing, Inc.
ISSN:0740-3194
OA Status:Closed
Publisher DOI:https://doi.org/10.1002/mrm.28530
PubMed ID:33009877

Download

Full text not available from this repository.
View at publisher

Get full-text in a library