Abstract
We conjecture that the set of homogeneous probability measures on the maximal Satake compactification of an arithmetic locally symmetric space S=Γ∖G/K is compact. More precisely, given a sequence of homogeneous probability measures on S, we expect that any weak limit is homogeneous with support contained in precisely one of the boundary components (including S itself). We introduce several tools to study this conjecture and we prove it in a number of cases, including when G=SL$_{3}(\mathbb{R})$ and Γ=SL$_{3}(\mathbb{Z})$.