Header

UZH-Logo

Maintenance Infos

Initiation of conceptus elongation coincides with an endometrium basic Fibroblast Growth Factor (FGF2) protein increase in Heifers


Chiumia, Daniel; Schulke, Katy; Groebner, Anna E; Waldschmitt, Nadine; Reichenbach, Horst-Dieter; Zakhartchenko, Valeri; Bauersachs, Stefan; Ulbrich, Susanne E (2020). Initiation of conceptus elongation coincides with an endometrium basic Fibroblast Growth Factor (FGF2) protein increase in Heifers. International Journal of Molecular Sciences, 21(5):1584.

Abstract

Fibroblast growth factors (FGF) play an important role during embryo development. To date, the role of FGF and the respective receptors (FGFR) during the preimplantation phase in cattle are not fully characterized. We examined FGF1, FGF2, FGFR1, FGFR2, and FGFR3 in cyclic and early pregnant heifers at Days 12, 15, and 18 after insemination (Day 0). Endometrial FGF1 mRNA transcript abundance in heifers varied significantly with respect to the day after insemination, the pregnancy status, and their interaction. The expression was higher in nonpregnant than in pregnant heifers at Day 18. The conceptus transcripts abundance of FGFR2 and FGFR3 were significantly lower at Day 15 than 18. In the endometrium, FGF1 protein abundance significantly decreased from Day 12 onwards and FGF2 protein abundance showed a minor, but a significant increase at Day 15 in comparison to Days 12 and 18. We concluded that the decrease in FGF1 mRNA expression in pregnant heifers at Day 18 points towards a potential contribution of FGF1 in the preimplantation process. Additionally, successful embryo elongation might require a spatiotemporal FGF2 protein increase in the endometrium.

Abstract

Fibroblast growth factors (FGF) play an important role during embryo development. To date, the role of FGF and the respective receptors (FGFR) during the preimplantation phase in cattle are not fully characterized. We examined FGF1, FGF2, FGFR1, FGFR2, and FGFR3 in cyclic and early pregnant heifers at Days 12, 15, and 18 after insemination (Day 0). Endometrial FGF1 mRNA transcript abundance in heifers varied significantly with respect to the day after insemination, the pregnancy status, and their interaction. The expression was higher in nonpregnant than in pregnant heifers at Day 18. The conceptus transcripts abundance of FGFR2 and FGFR3 were significantly lower at Day 15 than 18. In the endometrium, FGF1 protein abundance significantly decreased from Day 12 onwards and FGF2 protein abundance showed a minor, but a significant increase at Day 15 in comparison to Days 12 and 18. We concluded that the decrease in FGF1 mRNA expression in pregnant heifers at Day 18 points towards a potential contribution of FGF1 in the preimplantation process. Additionally, successful embryo elongation might require a spatiotemporal FGF2 protein increase in the endometrium.

Statistics

Citations

Dimensions.ai Metrics

Altmetrics

Downloads

0 downloads since deposited on 15 Oct 2020
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Veterinary Clinic > Department of Farm Animals
Dewey Decimal Classification:570 Life sciences; biology
630 Agriculture
Scopus Subject Areas:Physical Sciences > Catalysis
Life Sciences > Molecular Biology
Physical Sciences > Spectroscopy
Physical Sciences > Computer Science Applications
Physical Sciences > Physical and Theoretical Chemistry
Physical Sciences > Organic Chemistry
Physical Sciences > Inorganic Chemistry
Language:English
Date:26 February 2020
Deposited On:15 Oct 2020 15:11
Last Modified:16 Oct 2020 20:00
Publisher:MDPI Publishing
ISSN:1422-0067
OA Status:Gold
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.3390/ijms21051584
PubMed ID:32111034

Download

Gold Open Access

Download PDF  'Initiation of conceptus elongation coincides with an endometrium basic Fibroblast Growth Factor (FGF2) protein increase in Heifers'.
Preview
Content: Published Version
Language: English
Filetype: PDF
Size: 2MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)