Header

UZH-Logo

Maintenance Infos

Spatio-temporal prediction model of out-of-hospital cardiac arrest: Designation of medical priorities and estimation of human resources requirement


Auricchio, Angelo; Peluso, Stefano; Caputo, Maria Luce; Reinhold, Jost; Benvenuti, Claudio; Burkart, Roman; Cianella, Roberto; Klersy, Catherine; Baldi, Enrico; Mira, Antonietta (2020). Spatio-temporal prediction model of out-of-hospital cardiac arrest: Designation of medical priorities and estimation of human resources requirement. PLoS ONE, 15(8):e0238067.

Abstract

AIMS: To determine the out-of-hospital cardiac arrest (OHCA) rates and occurrences at municipality level through a novel statistical model accounting for temporal and spatial heterogeneity, space-time interactions and demographic features. We also aimed to predict OHCAs rates and number at municipality level for the upcoming years estimating the related resources requirement.
METHODS: All the consecutive OHCAs of presumed cardiac origin occurred from 2005 until 2018 in Canton Ticino region were included. We implemented an Integrated Nested Laplace Approximation statistical method for estimation and prediction of municipality OHCA rates, number of events and related uncertainties, using age and sex municipality compositions. Comparisons between predicted and real OHCA maps validated our model, whilst comparisons between estimated OHCA rates in different yeas and municipalities identified significantly different OHCA rates over space and time. Longer-time predicted OHCA maps provided Bayesian predictions of OHCA coverages in varying stressful conditions.
RESULTS: 2344 OHCAs were analyzed. OHCA incidence either progressively reduced or continuously increased over time in 6.8% of municipalities despite an overall stable spatio-temporal distribution of OHCAs. The predicted number of OHCAs accounts for 89% (2017) and 90% (2018) of the yearly variability of observed OHCAs with prediction error ≤1OHCA for each year in most municipalities. An increase in OHCAs number with a decline in the Automatic External Defibrillator availability per OHCA at region was estimated.
CONCLUSIONS: Our method enables prediction of OHCA risk at municipality level with high accuracy, providing a novel approach to estimate resource allocation and anticipate gaps in demand in upcoming years.

Abstract

AIMS: To determine the out-of-hospital cardiac arrest (OHCA) rates and occurrences at municipality level through a novel statistical model accounting for temporal and spatial heterogeneity, space-time interactions and demographic features. We also aimed to predict OHCAs rates and number at municipality level for the upcoming years estimating the related resources requirement.
METHODS: All the consecutive OHCAs of presumed cardiac origin occurred from 2005 until 2018 in Canton Ticino region were included. We implemented an Integrated Nested Laplace Approximation statistical method for estimation and prediction of municipality OHCA rates, number of events and related uncertainties, using age and sex municipality compositions. Comparisons between predicted and real OHCA maps validated our model, whilst comparisons between estimated OHCA rates in different yeas and municipalities identified significantly different OHCA rates over space and time. Longer-time predicted OHCA maps provided Bayesian predictions of OHCA coverages in varying stressful conditions.
RESULTS: 2344 OHCAs were analyzed. OHCA incidence either progressively reduced or continuously increased over time in 6.8% of municipalities despite an overall stable spatio-temporal distribution of OHCAs. The predicted number of OHCAs accounts for 89% (2017) and 90% (2018) of the yearly variability of observed OHCAs with prediction error ≤1OHCA for each year in most municipalities. An increase in OHCAs number with a decline in the Automatic External Defibrillator availability per OHCA at region was estimated.
CONCLUSIONS: Our method enables prediction of OHCA risk at municipality level with high accuracy, providing a novel approach to estimate resource allocation and anticipate gaps in demand in upcoming years.

Statistics

Citations

Altmetrics

Downloads

4 downloads since deposited on 27 Oct 2020
4 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Cardiocentro Ticino
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Life Sciences > General Biochemistry, Genetics and Molecular Biology
Life Sciences > General Agricultural and Biological Sciences
Health Sciences > Multidisciplinary
Language:English
Date:2020
Deposited On:27 Oct 2020 16:14
Last Modified:01 Nov 2020 17:16
Publisher:Public Library of Science (PLoS)
ISSN:1932-6203
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1371/journal.pone.0238067
PubMed ID:32866165

Download

Gold Open Access

Download PDF  'Spatio-temporal prediction model of out-of-hospital cardiac arrest: Designation of medical priorities and estimation of human resources requirement'.
Preview
Content: Published Version
Language: English
Filetype: PDF
Size: 1MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)