Header

UZH-Logo

Maintenance Infos

Psilocybin exerts distinct effects on resting state networks associated with serotonin and dopamine in mice


Grandjean, Joanes; Buehlmann, David; Buerge, Michaela; Sigrist, Hannes; Seifritz, Erich; Vollenweider, Franz X; Pryce, Christopher R; Rudin, Markus (2021). Psilocybin exerts distinct effects on resting state networks associated with serotonin and dopamine in mice. NeuroImage, 225:117456.

Abstract

Hallucinogenic agents have been proposed as potent antidepressants; this includes the serotonin (5-HT) receptor 2A agonist psilocybin. In human subjects, psilocybin alters functional connectivity (FC) within the default-mode network (DMN), a constellation of inter-connected regions that displays altered FC in depressive disorders. In this study, we investigated the effects of psilocybin on FC across the entire brain with a view to investigate underlying mechanisms. Psilocybin effects were investigated in lightly-anaesthetized mice using resting-state fMRI. Dual-regression analysis identified reduced FC within the ventral striatum in psilocybin- relative to vehicle-treated mice. Refinement of the analysis using spatial references derived from both gene expression maps and viral tracer projection fields revealed two distinct effects of psilocybin: it increased FC between 5-HT-associated networks and cortical areas, including elements of the murine DMN, thalamus, and midbrain; it decreased FC within dopamine (DA)-associated striatal networks. These results suggest that interactions between 5-HT- and DA-regulated neural networks contribute to the neural and therefore psychological effects of psilocybin. Furthermore, they highlight how information on molecular expression patterns and structural connectivity can assist in the interpretation of pharmaco-fMRI findings.

Abstract

Hallucinogenic agents have been proposed as potent antidepressants; this includes the serotonin (5-HT) receptor 2A agonist psilocybin. In human subjects, psilocybin alters functional connectivity (FC) within the default-mode network (DMN), a constellation of inter-connected regions that displays altered FC in depressive disorders. In this study, we investigated the effects of psilocybin on FC across the entire brain with a view to investigate underlying mechanisms. Psilocybin effects were investigated in lightly-anaesthetized mice using resting-state fMRI. Dual-regression analysis identified reduced FC within the ventral striatum in psilocybin- relative to vehicle-treated mice. Refinement of the analysis using spatial references derived from both gene expression maps and viral tracer projection fields revealed two distinct effects of psilocybin: it increased FC between 5-HT-associated networks and cortical areas, including elements of the murine DMN, thalamus, and midbrain; it decreased FC within dopamine (DA)-associated striatal networks. These results suggest that interactions between 5-HT- and DA-regulated neural networks contribute to the neural and therefore psychological effects of psilocybin. Furthermore, they highlight how information on molecular expression patterns and structural connectivity can assist in the interpretation of pharmaco-fMRI findings.

Statistics

Citations

Dimensions.ai Metrics
2 citations in Web of Science®
2 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

9 downloads since deposited on 02 Nov 2020
9 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Psychiatric University Hospital Zurich > Clinic for Psychiatry, Psychotherapy, and Psychosomatics
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Life Sciences > Neurology
Life Sciences > Cognitive Neuroscience
Uncontrolled Keywords:Cognitive Neuroscience, Neurology
Language:English
Date:1 January 2021
Deposited On:02 Nov 2020 16:30
Last Modified:03 Nov 2020 21:00
Publisher:Elsevier
ISSN:1053-8119
OA Status:Gold
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1016/j.neuroimage.2020.117456

Download

Gold Open Access

Download PDF  'Psilocybin exerts distinct effects on resting state networks associated with serotonin and dopamine in mice'.
Preview
Content: Published Version
Language: English
Filetype: PDF
Size: 2MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)