Header

UZH-Logo

Maintenance Infos

Two-loop rational terms in Yang-Mills theories


Lang, Jean-Nicolas; Pozzorini, Stefano; Zhang, Hantian; Zoller, Max F (2020). Two-loop rational terms in Yang-Mills theories. Journal of High Energy Physics, 2020(10):16.

Abstract

Scattering amplitudes in D dimensions involve particular terms that originate from the interplay of UV poles with the (D − 4)-dimensional parts of loop numerators. Such contributions can be controlled through a finite set of process-independent rational counterterms, which make it possible to compute loop amplitudes with numerical tools that construct the loop numerators in four dimensions. Building on a recent study [1] of the general properties of two-loop rational counterterms, in this paper we investigate their dependence on the choice of renormalisation scheme. We identify a nontrivial form of scheme dependence, which originates from the interplay of mass and field renormalisation with the (D−4)-dimensional parts of loop numerators, and we show that it can be controlled through a new kind of one-loop counterterms. This guarantees that the two-loop rational counterterms for a given renormalisable theory can be derived once and for all in terms of generic renormalisation constants, which can be adapted a posteriori to any scheme. Using this approach, we present the first calculation of the full set of two-loop rational counterterms in Yang-Mills theories. The results are applicable to SU(N) and U(1) gauge theories coupled to nf fermions with arbitrary masses.

Abstract

Scattering amplitudes in D dimensions involve particular terms that originate from the interplay of UV poles with the (D − 4)-dimensional parts of loop numerators. Such contributions can be controlled through a finite set of process-independent rational counterterms, which make it possible to compute loop amplitudes with numerical tools that construct the loop numerators in four dimensions. Building on a recent study [1] of the general properties of two-loop rational counterterms, in this paper we investigate their dependence on the choice of renormalisation scheme. We identify a nontrivial form of scheme dependence, which originates from the interplay of mass and field renormalisation with the (D−4)-dimensional parts of loop numerators, and we show that it can be controlled through a new kind of one-loop counterterms. This guarantees that the two-loop rational counterterms for a given renormalisable theory can be derived once and for all in terms of generic renormalisation constants, which can be adapted a posteriori to any scheme. Using this approach, we present the first calculation of the full set of two-loop rational counterterms in Yang-Mills theories. The results are applicable to SU(N) and U(1) gauge theories coupled to nf fermions with arbitrary masses.

Statistics

Citations

Altmetrics

Downloads

4 downloads since deposited on 03 Nov 2020
4 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Physics Institute
Dewey Decimal Classification:530 Physics
Scopus Subject Areas:Physical Sciences > Nuclear and High Energy Physics
Uncontrolled Keywords:Nuclear and High Energy Physics
Language:English
Date:1 October 2020
Deposited On:03 Nov 2020 10:04
Last Modified:04 Nov 2020 21:00
Publisher:Springer
ISSN:1029-8479
OA Status:Gold
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1007/jhep10(2020)016

Download

Gold Open Access

Download PDF  'Two-loop rational terms in Yang-Mills theories'.
Preview
Content: Published Version
Filetype: PDF
Size: 868kB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)