Header

UZH-Logo

Maintenance Infos

Interferon-β sensitizes human glioblastoma cells to the cyclin-dependent kinase inhibitor, TG02


Lohmann, Birthe; Le Rhun, Emilie; Silginer, Manuela; Epskamp, Mirka; Weller, Michael (2020). Interferon-β sensitizes human glioblastoma cells to the cyclin-dependent kinase inhibitor, TG02. Oncology Letters, 19(4):2649-2656.

Abstract

Novel treatments for glioblastoma, the most common malignant primary brain tumor, are urgently required. Type I interferons (IFN) are natural cytokines primarily involved in the defense against viral infections, which may also serve a role in the control of cancer, notably in the suppression of the cancer stem cell phenotype. TG02 is a novel orally available cyclin-dependent kinase 9 inhibitor which induces glioma cell apoptosis without profound caspase activation, which is currently explored in early clinical trials in newly diagnosed and recurrent glioblastoma. In the present study, human glioma-initiating cell line models were used to explore whether IFN-β modulates the anti-glioma activity of TG02. The present study employed immunoblotting to assess protein levels, several viability assays and gene silencing strategies to assess gene function. Pre-exposure to IFN-β sensitized human glioma models to a subsequent exposure to TG02. Combination treatment was associated with increased DEVD-amc cleaving caspase activity that was blocked by the anti-apoptotic protein, BCL2. However, BCL2 did not protect from the synergistic effects of IFN and TG02 on glioma cell growth. Furthermore, although IFN strongly induced pro-apoptotic XIAP-associated factor (XAF) expression, disrupting XAF expression did not abrogate the synergy with TG02. Consistent with that, caspase 3 gene silencing did not abrogate the effects of TG02 or IFN-β alone or in combination. Finally, it was observed that IFN-β may indeed modulate the effects of TG02 upstream in the signaling cascade since inhibition of RNA polymerase II phosphorylation, a direct readout of the pharmacodynamic activity of TG02, was facilitated when glioma cells were pre-exposed to IFN-β. In summary, these data suggest that type I IFN may be combined with TG02 to limit glioblastoma growth, but that the well characterized effects of IFN and TG02 on apoptotic signaling are dispensable for synergistic tumor growth inhibition. Instead, exploring how IFN signaling primes glioma cells for TG02-mediated direct target inhibition may help to design novel and effective pharmacological approaches to glioblastoma.

Abstract

Novel treatments for glioblastoma, the most common malignant primary brain tumor, are urgently required. Type I interferons (IFN) are natural cytokines primarily involved in the defense against viral infections, which may also serve a role in the control of cancer, notably in the suppression of the cancer stem cell phenotype. TG02 is a novel orally available cyclin-dependent kinase 9 inhibitor which induces glioma cell apoptosis without profound caspase activation, which is currently explored in early clinical trials in newly diagnosed and recurrent glioblastoma. In the present study, human glioma-initiating cell line models were used to explore whether IFN-β modulates the anti-glioma activity of TG02. The present study employed immunoblotting to assess protein levels, several viability assays and gene silencing strategies to assess gene function. Pre-exposure to IFN-β sensitized human glioma models to a subsequent exposure to TG02. Combination treatment was associated with increased DEVD-amc cleaving caspase activity that was blocked by the anti-apoptotic protein, BCL2. However, BCL2 did not protect from the synergistic effects of IFN and TG02 on glioma cell growth. Furthermore, although IFN strongly induced pro-apoptotic XIAP-associated factor (XAF) expression, disrupting XAF expression did not abrogate the synergy with TG02. Consistent with that, caspase 3 gene silencing did not abrogate the effects of TG02 or IFN-β alone or in combination. Finally, it was observed that IFN-β may indeed modulate the effects of TG02 upstream in the signaling cascade since inhibition of RNA polymerase II phosphorylation, a direct readout of the pharmacodynamic activity of TG02, was facilitated when glioma cells were pre-exposed to IFN-β. In summary, these data suggest that type I IFN may be combined with TG02 to limit glioblastoma growth, but that the well characterized effects of IFN and TG02 on apoptotic signaling are dispensable for synergistic tumor growth inhibition. Instead, exploring how IFN signaling primes glioma cells for TG02-mediated direct target inhibition may help to design novel and effective pharmacological approaches to glioblastoma.

Statistics

Citations

Dimensions.ai Metrics
2 citations in Web of Science®
2 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

3 downloads since deposited on 16 Dec 2020
3 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Neurology
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Health Sciences > Oncology
Life Sciences > Cancer Research
Language:English
Date:April 2020
Deposited On:16 Dec 2020 16:32
Last Modified:17 Dec 2020 21:00
Publisher:Spandidos Publications
ISSN:1792-1074
OA Status:Green
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.3892/ol.2020.11362
PubMed ID:32218815

Download

Green Open Access

Download PDF  'Interferon-β sensitizes human glioblastoma cells to the cyclin-dependent kinase inhibitor, TG02'.
Preview
Content: Published Version
Filetype: PDF
Size: 639kB
View at publisher
Licence: Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)