Header

UZH-Logo

Maintenance Infos

Fampridine-induced changes in walking kinetics are associated with clinical improvements in patients with multiple sclerosis


Weller, D; Lörincz, L; Sutter, T; Reuter, K; Linnebank, M; Weller, M; Zörner, B; Filli, L (2020). Fampridine-induced changes in walking kinetics are associated with clinical improvements in patients with multiple sclerosis. Journal of the Neurological Sciences, 416:116978.

Abstract

Gait dysfunction is common in patients with multiple sclerosis (PwMS). Treatment with prolonged-release fampridine (PR-fampridine) improves walking ability in some PwMS. Associated fampridine-induced changes in the walking pattern are still poorly understood but may provide a better understanding of the mechanisms underlying the beneficial drug effects. 61 PwMS were treated with PR-fampridine in a randomized, monocentric, double-blind and placebo-controlled clinical trial with crossover design (FAMPKIN). Drug-induced improvements in walking speed (Timed-25-Foot Walk; T25FW) and endurance (6-Minute Walk Test; 6MWT) were quantified. In this sub-study of the FAMPKIN trial, fampridine-induced changes in kinetic gait patterns were analyzed by pressure-based foot print analysis during treadmill walking. Vertical ground reaction forces were analyzed during different gait phases. Kinetic data of 44 PwMS was eligible for analysis. During double-blind treatment with PR-fampridine, patients performed significantly better in the T25FW and 6MWT than during placebo treatment (p < 0.0001 for both). At the group level (n = 44), there were no significant changes of gait kinetics under PR-fampridine vs. placebo. However, we found relevant changes of walking kinetics regarding forces during loading, single limb and pre-swing phase in a patient sub-group (n = 8). Interestingly, this sub-group demonstrated superior responsiveness to PR-fampridine in the clinical walking tests compared to those patients without any fampridine-induced changes in kinetics (n = 36). Our results demonstrate fampridine-induced changes in gait kinetics in a sub-group of PwMS. These gait pattern changes were accompanied by improved clinical walking performance under PR-fampridine. These results shed some light on the biomechanical changes in walking patterns underlying enhanced fampridine-induced gait performance.

Abstract

Gait dysfunction is common in patients with multiple sclerosis (PwMS). Treatment with prolonged-release fampridine (PR-fampridine) improves walking ability in some PwMS. Associated fampridine-induced changes in the walking pattern are still poorly understood but may provide a better understanding of the mechanisms underlying the beneficial drug effects. 61 PwMS were treated with PR-fampridine in a randomized, monocentric, double-blind and placebo-controlled clinical trial with crossover design (FAMPKIN). Drug-induced improvements in walking speed (Timed-25-Foot Walk; T25FW) and endurance (6-Minute Walk Test; 6MWT) were quantified. In this sub-study of the FAMPKIN trial, fampridine-induced changes in kinetic gait patterns were analyzed by pressure-based foot print analysis during treadmill walking. Vertical ground reaction forces were analyzed during different gait phases. Kinetic data of 44 PwMS was eligible for analysis. During double-blind treatment with PR-fampridine, patients performed significantly better in the T25FW and 6MWT than during placebo treatment (p < 0.0001 for both). At the group level (n = 44), there were no significant changes of gait kinetics under PR-fampridine vs. placebo. However, we found relevant changes of walking kinetics regarding forces during loading, single limb and pre-swing phase in a patient sub-group (n = 8). Interestingly, this sub-group demonstrated superior responsiveness to PR-fampridine in the clinical walking tests compared to those patients without any fampridine-induced changes in kinetics (n = 36). Our results demonstrate fampridine-induced changes in gait kinetics in a sub-group of PwMS. These gait pattern changes were accompanied by improved clinical walking performance under PR-fampridine. These results shed some light on the biomechanical changes in walking patterns underlying enhanced fampridine-induced gait performance.

Statistics

Citations

Altmetrics

Downloads

0 downloads since deposited on 14 Dec 2020
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Neurology
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Life Sciences > Neurology
Health Sciences > Neurology (clinical)
Language:English
Date:8 June 2020
Deposited On:14 Dec 2020 18:00
Last Modified:14 Dec 2020 18:08
Publisher:Elsevier
ISSN:0022-510X
OA Status:Closed
Publisher DOI:https://doi.org/10.1016/j.jns.2020.116978
PubMed ID:32559515

Download

Closed Access: Download allowed only for UZH members