Header

UZH-Logo

Maintenance Infos

Effects of Visceral Interoception on Topological Properties of the Brain - A Graph Theory Analysis of Resting state fMRI


Jarrahi, Behnaz; Kollias, Spyros (2020). Effects of Visceral Interoception on Topological Properties of the Brain - A Graph Theory Analysis of Resting state fMRI. IEEE Engineering in Medicine and Biology Society. Annual International Conference Proceedings, 2020:1116-1119.

Abstract

Recent neuroimaging studies have employed graph theory as a data-driven approach to describe topological organization of the brain under different neurological disorders or task conditions and across life span. In this exploratory study, we tested whether subtle differences in interoception related to intravesical fullness can alter brain topological architecture in healthy participants. 17 right-handed women underwent a series of resting state fMRI scans that included catheterization and partial bladder filling. Using a whole brain regions of interest (ROIs), we computed several graph theory metrics to assess the efficiency of brain-wide information exchange. Results showed that brain network's topological properties significantly changed in many brain regions when we binary compared different interoceptive resting state conditions. Notably, we observed changes in global efficiency in the salience network, the central executive network, anterior dorsal attention network and the posterior default-mode network (DMN) as bladder became full and interoceptive signals intensified. Moreover, degree (the number of connections for each node), and betweenness centrality (how connected a particular region is to other regions) differed between the empty bladder, the catheterized empty bladder, and the catheterized and partially filled bladder. Comparing resting state data before and after an interoceptive task (repeated intravesical infusion and drainage) further showed increased average path length for the salience networks and decreased clustering coefficient of the DMN. These results suggest visceral interoception influences brain topological properties of resting state networks.

Abstract

Recent neuroimaging studies have employed graph theory as a data-driven approach to describe topological organization of the brain under different neurological disorders or task conditions and across life span. In this exploratory study, we tested whether subtle differences in interoception related to intravesical fullness can alter brain topological architecture in healthy participants. 17 right-handed women underwent a series of resting state fMRI scans that included catheterization and partial bladder filling. Using a whole brain regions of interest (ROIs), we computed several graph theory metrics to assess the efficiency of brain-wide information exchange. Results showed that brain network's topological properties significantly changed in many brain regions when we binary compared different interoceptive resting state conditions. Notably, we observed changes in global efficiency in the salience network, the central executive network, anterior dorsal attention network and the posterior default-mode network (DMN) as bladder became full and interoceptive signals intensified. Moreover, degree (the number of connections for each node), and betweenness centrality (how connected a particular region is to other regions) differed between the empty bladder, the catheterized empty bladder, and the catheterized and partially filled bladder. Comparing resting state data before and after an interoceptive task (repeated intravesical infusion and drainage) further showed increased average path length for the salience networks and decreased clustering coefficient of the DMN. These results suggest visceral interoception influences brain topological properties of resting state networks.

Statistics

Citations

Dimensions.ai Metrics

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Neuroradiology
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Physical Sciences > Signal Processing
Physical Sciences > Biomedical Engineering
Physical Sciences > Computer Vision and Pattern Recognition
Health Sciences > Health Informatics
Language:English
Date:July 2020
Deposited On:04 Nov 2020 14:45
Last Modified:28 Feb 2021 08:03
Publisher:Institute of Electrical and Electronics Engineers
ISSN:2375-7477
OA Status:Closed
Publisher DOI:https://doi.org/10.1109/EMBC44109.2020.9175465
PubMed ID:33018182

Download

Full text not available from this repository.
View at publisher

Get full-text in a library