Header

UZH-Logo

Maintenance Infos

Spacecraft and interplanetary contributions to the magnetic environment on-board LISA Pathfinder


Jetzer, Philippe; Audley, H; Baird, J; Binetruy, P; et al (2020). Spacecraft and interplanetary contributions to the magnetic environment on-board LISA Pathfinder. Monthly Notices of the Royal Astronomical Society, 494(2):3014-3027.

Abstract

LISA Pathfinder (LPF) has been a space-based mission designed to test new technologies that will be required for a gravitational wave observatory in space. Magnetically driven forces play a key role in the instrument sensitivity in the low-frequency regime (mHz and below), the measurement band of interest for a space-based observatory. The magnetic field can couple to the magnetic susceptibility and remanent magnetic moment from the test masses and disturb them from their geodesic movement. LPF carried on-board a dedicated magnetic measurement subsystem with noise levels of 10 nT Hz−1/2 from 1 Hz down to 1 mHz. In this paper we report on the magnetic measurements throughout LPF operations. We characterize the magnetic environment within the spacecraft, study the time evolution of the magnetic field and its stability down to 20 μHz, where we measure values around 200 nT Hz−1/2⁠, and identify two different frequency regimes, one related to the interplanetary magnetic field and the other to the magnetic field originating inside the spacecraft. Finally, we characterize the non-stationary component of the fluctuations of the magnetic field below the mHz and relate them to the dynamics of the solar wind.

Abstract

LISA Pathfinder (LPF) has been a space-based mission designed to test new technologies that will be required for a gravitational wave observatory in space. Magnetically driven forces play a key role in the instrument sensitivity in the low-frequency regime (mHz and below), the measurement band of interest for a space-based observatory. The magnetic field can couple to the magnetic susceptibility and remanent magnetic moment from the test masses and disturb them from their geodesic movement. LPF carried on-board a dedicated magnetic measurement subsystem with noise levels of 10 nT Hz−1/2 from 1 Hz down to 1 mHz. In this paper we report on the magnetic measurements throughout LPF operations. We characterize the magnetic environment within the spacecraft, study the time evolution of the magnetic field and its stability down to 20 μHz, where we measure values around 200 nT Hz−1/2⁠, and identify two different frequency regimes, one related to the interplanetary magnetic field and the other to the magnetic field originating inside the spacecraft. Finally, we characterize the non-stationary component of the fluctuations of the magnetic field below the mHz and relate them to the dynamics of the solar wind.

Statistics

Citations

Dimensions.ai Metrics
15 citations in Web of Science®
14 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

17 downloads since deposited on 04 Nov 2020
2 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Physics Institute
Dewey Decimal Classification:530 Physics
Scopus Subject Areas:Physical Sciences > Astronomy and Astrophysics
Physical Sciences > Space and Planetary Science
Uncontrolled Keywords:Space and Planetary Science, Astronomy and Astrophysics
Language:English
Date:11 May 2020
Deposited On:04 Nov 2020 15:08
Last Modified:23 Jun 2024 01:44
Publisher:Oxford University Press
ISSN:0035-8711
OA Status:Green
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1093/mnras/staa830
Project Information:
  • : FunderSNSF
  • : Grant ID100013-103747
  • : Project TitleEntwicklung dynamischer Repräsentationen bei Kindern
  • Content: Published Version
  • Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)