Abstract
The cellular prion protein of the mouse, mPrP(C), consists of 208 amino acids (residues 23-231). It contains a carboxy-terminal domain, mPrP(121-231), which represents an autonomous folding unit with three alpha-helices and a two-stranded antiparallel beta-sheet. We expressed the complete amino acid sequence of the prion protein, mPrP(23-231), in the cytoplasm of Escherichia coli. mPrP(23-231) was solubilized from inclusion bodies by 8 M urea, oxidatively refolded and purified to homogeneity by conventional chromatographic techniques. Comparison of near-UV circular dichroism, fluorescence and one-dimensional 1H-NMR spectra of mPrP(23-231) and mPrP(121-231) shows that the amino-terminal segment 23-120, which includes the five characteristic octapeptide repeats, does not contribute measurably to the manifestation of three-dimensional structure as detected by these techniques, indicating that the residues 121-231 might be the only polypeptide segment of PrP(C) with a defined three-dimensional structure.