Navigation auf zora.uzh.ch

Search ZORA

ZORA (Zurich Open Repository and Archive)

PEDF deficiency increases the susceptibility of rd10 mice to retinal degeneration

Dixit, Shivani; Polato, Federica; Samardzija, Marijana; Abu-Asab, Mones; Grimm, Christian; Crawford, Susan E; Becerra, S Patricia (2020). PEDF deficiency increases the susceptibility of rd10 mice to retinal degeneration. Experimental Eye Research, 198:108121.

Abstract

The SERPINF1 gene encodes pigment epithelium-derived factor (PEDF), a member of the serpin superfamily with neurotrophic and antiangiogenic properties in the retina. We hypothesized that absence of PEDF would lead to increased stress-associated retinal degeneration in Serpinf1 null mice. Accordingly, using a Serpinf1 null mouse model, we investigated the impact of PEDF absence on retinal morphology, and susceptibility to induced and inherited retinal degeneration. We studied the pattern of Serpinf1 expression in the mouse retina layers. PEDF protein was detected by western blotting. Transmission electron microscopy was performed on mouse retina. Serpinf1 null mice and wild type littermates were injected with NaIO$_{3}$ (30 mg/kg body weight) intraperitonially. At post-injection day 1, 3, 4, 6 and 8 mice were euthanized, and eyes were enucleated. Serpinf1 null and rd10 double mutant mice were generated and their eyes enucleated at different time points from post-natal day 15 to post-natal day 28. Enucleated eyes were processed for hematoxylin and eosin staining and histopathological evaluations. We found that Serpinf1 was expressed in the retinal pigment epithelium, in the inner nuclear layer and in the ganglion cell layer, but undetectable in the outer nuclear layer of wild type mice. Plasma PEDF protein levels were undetectable in Serpinf1 null animals. RPE atrophy and retinal thinning were observed in NaIO$_{3}$-treated wild type mice that progressed with time post-injection. NaIO$_{3}$-treated Serpinf1 null mice showed comparatively better retinal morphology than wild type mice at day 4 post-injection. However, the absence of PEDF in Serpinf1 null x rd10 mice increased the susceptibility to retinal degeneration relative to that of rd10 mice. We concluded that histopathological evaluation of retinas lacking PEDF showed that removal of the Serpinf1 gene may activate PEDF-independent compensatory mechanisms to protect the retina against oxidative stress, while it increases the susceptibility to degenerate the retina in inherited retinal degeneration models.

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Ophthalmology Clinic
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Health Sciences > Ophthalmology
Life Sciences > Sensory Systems
Life Sciences > Cellular and Molecular Neuroscience
Language:English
Date:September 2020
Deposited On:25 Nov 2020 17:11
Last Modified:23 Mar 2025 02:39
Publisher:Elsevier
ISSN:0014-4835
OA Status:Closed
Publisher DOI:https://doi.org/10.1016/j.exer.2020.108121
PubMed ID:32721425

Metadata Export

Statistics

Citations

Dimensions.ai Metrics
13 citations in Web of Science®
14 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 25 Nov 2020
0 downloads since 12 months

Authors, Affiliations, Collaborations

Similar Publications